

S1D13A05 LCD/USB Companion Chip

S1D13A05 TECHNICAL MANUAL

Document Number: X40A-Q-001-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

COMPREHENSIVE SUPPORT TOOLS

EPSON provides the designer and manufacturer a complete set of resources and tools for the development of LCD Graphics Systems.

Documentation

- · Technical manuals
- · Evaluation/Demonstration board manual

Evaluation/Demonstration Board

- · Assembled and fully tested Graphics Evaluation/Demonstration board
- · Schematic of Evaluation/Demonstration board
- · Parts List
- · Installation Guide
- CPU Independent Software Utilities
- Evaluation Software
- · Display Drivers

Application Engineering Support

EPSON offers the following services through their Sales and Marketing Network:

- · Sales Technical Support
- Customer Training
- · Design Assistance

Application Engineering Support

Engineering and Sales Support is provided by:

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

GRAPHICS S1D13A05

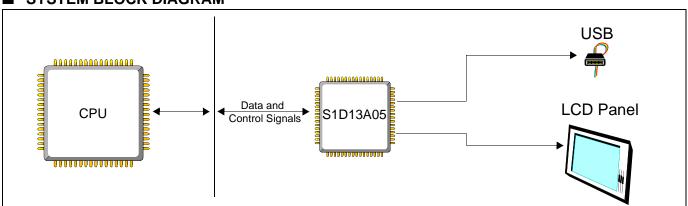
S1D13A05 LCD/USB Companion Chip

August 2001

The S1D13A05 is an LCD/USB solution designed for seamless connection to a wide variety of microprocessors. The S1D13A05 integrates a USB slave controller and an LCD graphics controller with an embedded 256K byte SRAM display buffer. The LCD controller supports all standard panel types and multiple TFT types eliminating the need for an external timing control IC. The S1D13A05 includes a Hardware Acceleration Engine to greatly improve screen drawing functions and the built-in USB controller provides revision 1.1 compliance for applications requiring a USB client. This high level of integration provides a low cost, low power, single chip solution to meet the demands of embedded markets requiring USB client support, such as Mobile Communications devices and Palm-size PCs.

The S1D13A05 utilizes a guaranteed low-latency CPU architecture that provides support for microprocessors without READY/WAIT# handshaking signals. The 32-bit internal data path, write buffer and the Hardware Acceleration Engine provide high performance bandwidth into display memory allowing for fast display updates.

Additionally, products requiring a rotated display can take advantage of the SwivelView™ feature which provides hardware rotation of the display memory transparent to the software application. The S1D13A05 also provides support for "Picture-in-Picture Plus" (a variable size Overlay window).


The S1D13A05, with its integrated USB client, provides impressive support for Palm OS[®] handhelds. However, its impartiality to CPU type or operating system makes it an ideal display solution for a wide variety of applications.

■ FEATURES

- Embedded 256KB Display Buffer.
- Low Operating Voltage.
- Low-latency CPU interface.
- Direct support for multiple CPU types.
- Programmable resolutions and color depths.
- Passive LCD support.
- Active Matrix LCD support.
- Extended TFT interfaces (Type 2, 3, 4).
- 'Direct' Sharp HR-TFT support (including Mode 2).
- 'Direct' Casio TFT support.

- USB Client, Revision 1.1 compliant.
- SwivelViewTM (90°, 180°, 270° hardware rotation of displayed image).
- (Patent # 5,734,875 Patent # 5,956,049 Patent #6,262,751)
- "Picture-in-Picture Plus".
- Pixel Doubling.
- Hardware Acceleration Engine.
- Software Initiated Power Save Mode.
- 48MHz crystal for USBCLK.
- Software Video Invert.
- 121-pin PFBGA package.

■ SYSTEM BLOCK DIAGRAM

X40A-C-001-02

S1D13A05

DESCRIPTION

Memory Interface

Embedded 256K byte SRAM display buffer.

CPU Interface

- 'Fixed' low-latency CPU access times.
- Direct support for: Hitachi SH-4 / SH-3. Motorola M68xxx (REDCAP2, DragonBall, ColdFire). Motorola Dragonball SZ support (66MHz) MPU bus interface with programmable READY.

Integrated USB Features

USB Client, Revision 1.1 Compliant.

Power Down Modes

Software Initiated Power Save Mode.

Operating Voltage

- $CORE_{VDD}$ 2.0 ± 10% volts or 2.5 ± 10% volts.
- IO_{VDD} 3.3 ± 10% volts.

Clock Source

- Three independent clock inputs including dedicated USB clock (single clock possible if USB not required).
- 48MHz crystal oscillator for USBCLK.

Package

121-pin PFBGA

Integrated LCD Controller Features

- 1/2/4/8/16 bit-per-pixel (bpp) support.
- Up to 64 gray shades on monochrome passive panels.
- Up to 64K colors on passive/active matrix panels.
- Single-panel, single-drive passive displays.
 - 4/8-bit monochrome and 4/8/16-bit color interfaces.
- 9/12/18-bit Active matrix TFT interface.
- 'Direct support for multiple TFT interfaces (Epson, Sharp, Type 2, 3, 4, external timing IC not required).
- SwivelView: hardware rotation by 90°, 180°, 270°.
- "Picture-in-Picture Plus": displays a variable size window overlaid over background image.
- Pixel Doubling: horizontal and vertical resolutions can be doubled without any additional memory.
- Software video invert.
- Typical resolutions supported: 320x320@16bpp 160x160 @16bpp (2 pages) 160x240 @16bpp
- 2D BitBLT Engine.

Write BLT Transparent Write BLT Move BLT Transparent Move BLT Solid Fill BLT Read BLT

Pattern Fill Color Expansion BLT Move BLT with Color Expansion

CONTACT YOUR SALES REPRESENTATIVE FOR THESE COMPREHENSIVE DESIGN TOOLS

- S1D13A05 Technical Manual
- S5U13A05 Evaluation Boards
 Windows[®] CE Display Driver
- CPU Independent Software Utilities
- Palm OS[®] Hardware Abstraction Layer
- VXWorks[®] TornadoTM Display Driver

Japan

Seiko Epson Corporation **Electronic Devices Marketing Division** 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564

http://www.epson.co.jp

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164

Singapore Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.tw/

http://www.epson.com.sg/ Copyright © 2001 Epson Research and Development, Inc. All rights reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/ EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws. EPSON is a registered trademark of Seiko Epson Corporation. Palm Computing is a registered trademark and the Palm OS platform Platinum logo is a trademark of Palm Computing, Inc., 3Com or its subsidiaries. Microsoft, Windows, and the Windows Embedded Partner Logo are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

X40A-C-001-02

S1D13A05 LCD/USB Companion Chip

Hardware Functional Specification

Document Number: X40A-A-001-04

Status: Revision 4.0

Issue Date: 2003/05/01

Copyright © 2002, 2003 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other Trademarks are the property of their respective owners

Table of Contents

1	Introduction	13
	1.1 Scope	13
	1.2 Overview Description	13
2	Features	14
	2.1 Integrated Frame Buffer	14
	2.2 CPU Interface	14
	2.3 Display Support	14
	2.4 Display Modes	15
	2.5 Display Features	15
	2.6 Clock Source	15
	2.7 USB Device	15
	2.8 2D Acceleration	16
	2.9 Miscellaneous	16
3	Typical System Implementation Diagrams	17
	3.1 Typical System Diagrams	17
	3.2 USB Interface	21
4	Pins	22
	4.1 Pinout Diagram - PFBGA - 121pin	22
	4.2 Pin Descriptions	23
	4.2.1 Host Interface	23
	4.2.2 LCD Interface	26
	4.2.3 Clock Input	30
	4.2.4 Miscellaneous	31
	4.2.5 Power And Ground	
	4.3 Summary of Configuration Options	
	4.4 Host Bus Interface Pin Mapping	
	4.5 LCD Interface Pin Mapping	
5	D.C. Characteristics	36
6	A.C. Characteristics	37
	6.1 Clock Timing	37
	6.1.1 Input Clocks	37
	6.1.2 Internal Clocks	39
	6.2 CPU Interface Timing	40
	6.2.1 Generic #1 Interface Timing	
	6.2.2 Generic #2 Interface Timing	42
	6.2.3 Hitachi SH-3 Interface Timing	11

	6.2.4	Hitachi SH-4 Interface Timing								
	6.2.5	Motorola MC68K #1 Interface Timing								
	6.2.6	Motorola MC68K #2 Interface Timing								
	6.2.7	Motorola REDCAP2 Interface Timing								
	6.2.8	Motorola Dragonball Interface Timing with DTACK								
	6.2.9	Motorola Dragonball Interface Timing w/o DTACK								
6.3	LCD	Power Sequencing								
	6.3.1	Passive/TFT Power-On Sequence								
	6.3.2	Passive/TFT Power-Off Sequence								
6.4	Displ	ay Interface								
	6.4.1	Generic STN Panel Timing								
	6.4.2	Single Monochrome 4-Bit Panel Timing								
	6.4.3	Single Monochrome 8-Bit Panel Timing								
	6.4.4	Single Color 4-Bit Panel Timing								
	6.4.5	Single Color 8-Bit Panel Timing (Format 1)								
	6.4.6	Single Color 8-Bit Panel Timing (Format 2)								
	6.4.7	Single Color 16-Bit Panel Timing								
	6.4.8	Generic TFT Panel Timing								
	6.4.9	9/12/18-Bit TFT Panel Timing								
	6.4.10	Sharp HR-TFT Panel Timing								
	6.4.11	6								
	6.4.12	TFT Type 2 Panel Timing								
	6.4.13	TFT Type 3 Panel Timing								
	6.4.14	TFT Type 4 Panel Timing								
6.5	USB	Timing								
Clo	ocks .									
7.1	Clock	Descriptions								
	7.1.1	BCLK								
	7.1.2	MCLK								
	7.1.3	PCLK								
	7.1.4	PWMCLK								
7.2	Clock	Selection								
7.3	Clock	xs versus Functions								
Re	gisters									
8.1	_	ster Mapping								
8.2	•	egister Set								
8.3		Register Descriptions (Offset = 0h)								
	8.3.1	Read-Only Configuration Registers								
	8.3.2	Clock Configuration Registers								

7

8

	8.3.3 Panel Configuration Registers	13
	8.3.4 Look-Up Table Registers	8
	8.3.5 Display Mode Registers	0
	8.3.6 Picture-in-Picture Plus (PIP+) Registers	7
	8.3.7 Miscellaneous Registers	2
	8.3.8 Extended Panel Registers	1
	8.4 USB Registers (Offset = 4000h)	
	8.5 2D Acceleration (BitBLT) Registers (Offset = 8000h)	
	8.6 2D Accelerator (BitBLT) Data Register Descriptions	5
9	2D Accelerator (BitBLT) Engine	6
	9.1 Overview	6
	9.2 BitBLT Operations	6
10	Frame Rate Calculation	7
11	Display Data Formats	8
12	Look-Up Table Architecture	9
	12.1 Monochrome Modes	<u>5</u> 9
	12.2 Color Modes	1
13	SwivelView™	5
	13.1 Concept	15
	13.2 90° SwivelView TM	5
	13.2.1 Register Programming	6
	13.3 180° SwivelView TM	7
	13.3.1 Register Programming	7
	13.4 270° SwivelView TM	8
	13.4.1 Register Programming	9
14	Picture-in-Picture Plus (PIP+)	0
	14.1 Concept	0
	14.2 With SwivelView Enabled	
	14.2.1 SwivelView 90°	
	14.2.2 SwivelView 180°	
	14.2.3 SwivelView 270°	
15	Power Save Mode	3
16	USB Considerations	
	16.1 USB Oscillator Circuit	34
17	Mechanical Data	5
18	References	6
19	Sales and Technical Support	7

List of Tables

Table 4-1: PFBGA 121-pin Mapping
Table 4-2: Host Interface Pin Descriptions
Table 4-3: LCD Interface Pin Descriptions
Table 4-4: Clock Input Pin Descriptions
Table 4-5: Miscellaneous Pin Descriptions
Table 4-6: Power And Ground Pin Descriptions
Table 4-7: Summary of Power-On/Reset Options
Table 4-8: Host Bus Interface Pin Mapping
Table 4-9: LCD Interface Pin Mapping
Table 5-1: Absolute Maximum Ratings
Table 5-2: Recommended Operating Conditions
Table 5-3: Electrical Characteristics for VDD = 3.3V typical
Table 6-1: Clock Input Requirements for CLKI when CLKI to BCLK divide > 1
Table 6-2: Clock Input Requirements for CLKI when CLKI to BCLK divide = 1
Table 6-3: Clock Input Requirements for CLKI2
Table 6-4: Internal Clock Requirements
Table 6-5: Generic #1 Interface Timing
Table 6-6: Generic #1 Interface Truth Table for Little Endian
Table 6-7: Generic #1 Interface Truth Table for Big Endian
Table 6-8: Generic #2 Interface Timing
Table 6-9: Generic #2 Interface Truth Table for Little Endian
Table 6-10: Hitachi SH-3 Interface Timing
Table 6-11: Hitachi SH-4 Interface Timing
Table 6-12: Motorola MC68K#1 Interface Timing
Table 6-13: Motorola MC68K#2 Interface Timing
Table 6-14: Motorola Redcap2 Interface Timing
Table 6-15: Motorola Dragonball Interface Timing with DTACK
Table 6-16: Motorola Dragonball Interface Timing w/o DTACK
Table 6-17: Passive/TFT Power-On Sequence Timing
Table 6-18: Passive/TFT Power-Off Sequence Timing
Table 6-19: Panel Timing Parameter Definition and Register Summary
Table 6-20: Single Monochrome 4-Bit Panel A.C. Timing
Table 6-21: Single Monochrome 8-Bit Panel A.C. Timing
Table 6-22: Single Color 4-Bit Panel A.C. Timing
Table 6-23: Single Color 8-Bit Panel A.C. Timing (Format 1)
Table 6-24: Single Color 8-Bit Panel A.C. Timing (Format 2)
Table 6-25: Single Color 16-Bit Panel A.C. Timing

Table 6-26: TFT A.C. Timing
Table 6-27: Sharp HR-TFT Panel Horizontal Timing
Table 6-28: Sharp HR-TFT Panel Vertical Timing
Table 6-29: Casio TFT Horizontal Timing
Table 6-30: Casio TFT Vertical Timing
Table 6-31: TFT Type 2 Horizontal Timing
Table 6-32: TFT Type 2 Vertical Timing
Table 6-33: TFT Type 3 Horizontal Timing
Table 6-34: TFT Type 3 Vertical Timing
Table 6-35: TFT Type 4 A.C. Timing
Table 6-36 USB Interface Timing
Table 7-1: BCLK Clock Selection
Table 7-2: MCLK Clock Selection
Table 7-3: PCLK Clock Selection
Table 7-4: Relationship between MCLK and PCLK
Table 7-5: PWMCLK Clock Selection
Table 7-6: S1D13A05 Internal Clock Requirements
Table 8-1: S1D13A05 Register Mapping
Table 8-2: S1D13A05 Register Set
Table 8-3: MCLK Divide Selection
Table 8-4: PCLK Divide Selection
Table 8-5: PCLK Source Selection
Table 8-6: Panel Data Width Selection
Table 8-7: LCD Panel Type Selection
Table 8-8: Display Control Summary
Table 8-9: SwivelViewTM Mode Select Options
Table 8-10: LCD Bit-per-pixel Selection
Table 8-11: Extended Panel Type Selection
Table 8-12: 32-bit Address Increments for Color Depth
Table 8-13: 32-bit Address Increments for Color Depth
Table 8-14: 32-bit Address Increments for Color Depth
Table 8-15: 32-bit Address Increments for Color Depth
Table 8-16: GPIO7 Usage
Table 8-17: GPIO6 Usage
Table 8-18: GPIO5 Usage
Table 8-19: GPIO4 Usage
Table 8-20: GPIO3 Usage
Table 8-21: GPIO2 Usage
Table 8-22: GPIO1 Usage
Table 8-23: GPIO0 Usage

Table 8-24: PWM Clock Divide Select Options
Table 8-25: PWMCLK Source Selection
Table 8-26: PWMOUT Duty Cycle Select Options
Table 8-27: AP Pulse Width
Table 8-28: AP Rising Position
Table 8-29: VCLK Hold
Table 8-30: VCLK Setup
Table 8-31: PCLK2 Divide Rate
Table 8-32: PCLK1 Divide Rate
Table 8-33: Number of Source Driver ICs
Table 8-34: BitBLT FIFO Words Available
Table 8-35 :BitBLT ROP Code/Color Expansion Function Selection
Table 8-36 :BitBLT Operation Selection
Table 8-37 :BitBLT Source Start Address Selection
Table 15-1: Power Save Mode Function Summary
Table 16-1: Resistance and Capacitance Values for Example Circuit

List of Figures

Figure 3-1:	Typical System Diagram (Generic #1 Bus)
Figure 3-2:	Typical System Diagram (Generic #2 Bus)
Figure 3-3:	Typical System Diagram (Hitachi SH-4 Bus)
Figure 3-4:	Typical System Diagram (Hitachi SH-3 Bus)
Figure 3-5:	Typical System Diagram (MC68K # 1, Motorola 16-Bit 68000)
Figure 3-6:	Typical System Diagram (MC68K #2, Motorola 32-Bit 68030)
Figure 3-7:	Typical System Diagram (Motorola REDCAP2 Bus)
Figure 3-8:	Typical System Diagram (Motorola MC68EZ328/MC68VZ328 "DragonBall" Bus) 20
Figure 3-9:	USB Typical Implementation
Figure 4-1:	Pinout Diagram - PFBGA 121-pin
Figure 6-1:	Clock Input Requirements
Figure 6-2:	Generic #1 Interface Timing
Figure 6-3:	Generic #2 Interface Timing
Figure 6-4:	Hitachi SH-3 Interface Timing
Figure 6-5:	Hitachi SH-4 Interface Timing
Figure 6-6:	Motorola MC68K #1 Interface Timing
Figure 6-7:	Motorola MC68K #2 Interface Timing
Figure 6-8:	Motorola Redcap2 Interface Timing
Figure 6-9:	Motorola Dragonball Interface Timing with DTACK
Figure 6-10:	Motorola Dragonball Interface Timing w/o DTACK
Figure 6-11:	Passive/TFT Power-On Sequence Timing
Figure 6-12:	Passive/TFT Power-Off Sequence Timing
Figure 6-13:	Panel Timing Parameters
Figure 6-14:	Generic STN Panel Timing
Figure 6-15:	Single Monochrome 4-Bit Panel Timing
Figure 6-16:	Single Monochrome 4-Bit Panel A.C. Timing
Figure 6-17:	Single Monochrome 8-Bit Panel Timing
Figure 6-18:	Single Monochrome 8-Bit Panel A.C. Timing
Figure 6-19:	Single Color 4-Bit Panel Timing
Figure 6-20:	Single Color 4-Bit Panel A.C. Timing
Figure 6-21:	Single Color 8-Bit Panel Timing (Format 1)
Figure 6-22:	Single Color 8-Bit Panel A.C. Timing (Format 1)
Figure 6-23:	Single Color 8-Bit Panel Timing (Format 2)
Figure 6-24:	Single Color 8-Bit Panel A.C. Timing (Format 2)
Figure 6-25:	Single Color 16-Bit Panel Timing
Figure 6-26:	Single Color 16-Bit Panel A.C. Timing
Figure 6-27:	Generic TFT Panel Timing

Figure 6-28: 18-Bit TFT Panel Timing
Figure 6-29: TFT A.C. Timing
Figure 6-30: Sharp HR-TFT Panel Horizontal Timing
Figure 6-31: Sharp HR-TFT Panel Vertical Timing
Figure 6-32: Casio TFT Horizontal Timing
Figure 6-33: Casio TFT Vertical Timing
Figure 6-34: TFT Type 2 Horizontal Timing
Figure 6-35: TFT Type 2 Vertical Timing
Figure 6-36: TFT Type 3 Horizontal Timing
Figure 6-37: TFT Type 3 Vertical Timing
Figure 6-38: TFT Type 4 Panel Timing
Figure 6-39: TFT Type 4 A.C. Timing
Figure 6-40 Data Signal Rise and Fall Time
Figure 6-41 Differential Data Jitter
Figure 6-42 Differential to EOP Transition Skew and EOP Width
Figure 6-43 Receiver Jitter Tolerance
Figure 7-1: Clock Selection
Figure 8-1: PWM Clock Block Diagram
Figure 11-1: 4/8/16 Bit-Per-Pixel Display Data Memory Organization
Figure 12-1: 1 Bit-per-pixel Monochrome Mode Data Output Path
Figure 12-2: 2 Bit-per-pixel Monochrome Mode Data Output Path
Figure 12-3: 4 Bit-per-pixel Monochrome Mode Data Output Path
Figure 12-4: 8 Bit-per-pixel Monochrome Mode Data Output Path
Figure 12-5: 1 Bit-Per-Pixel Color Mode Data Output Path
Figure 12-6: 2 Bit-Per-Pixel Color Mode Data Output Path
Figure 12-7: 4 Bit-Per-Pixel Color Mode Data Output Path
Figure 12-8: 8 Bit-per-pixel Color Mode Data Output Path
Figure 13-1: Relationship Between The Screen Image and the Image Refreshed in 90° SwivelView. 175
Figure 13-2: Relationship Between The Screen Image and the Image Refreshed in 180° SwivelView.177
Figure 13-3: Relationship Between The Screen Image and the Image Refreshed in 270° SwivelView.178
Figure 14-1: Picture-in-Picture Plus with SwivelView disabled
Figure 14-2: Picture-in-Picture Plus with SwivelView 90° enabled
Figure 14-3: Picture-in-Picture Plus with SwivelView 180° enabled
Figure 14-4: Picture-in-Picture Plus with SwivelView 270° enabled
Figure 16-1: USB Oscillator Example Circuit
Figure 17-1: Mechanical Data PFBGA 121-pin Package

1 Introduction

1.1 Scope

This is the Hardware Functional Specification for the S1D13A05 LCD/USB Companion Chip. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers.

This document is updated as appropriate. Please check for the latest revision of this document before beginning any development. The latest revision can be downloaded at www.erd.epson.com.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

1.2 Overview Description

The S1D13A05 is an LCD/USB solution designed for seamless connection to a wide variety of microprocessors. The S1D13A05 integrates a USB slave controller and an LCD graphics controller with an embedded 256K byte SRAM display buffer. The LCD controller supports all standard panel types and multiple TFT types eliminating the need for an external timing control IC. The S1D13A05 includes a Hardware Acceleration Engine to greatly improve screen drawing functions and the built-in USB controller provides revision 1.1 compliance for applications requiring a USB client. This high level of integration provides a low cost, low power, single chip solution to meet the demands of embedded markets requiring USB client support, such as Mobile Communications devices and Palmsize PCs.

The S1D13A05 utilizes a guaranteed low-latency CPU architecture that provides support for microprocessors without READY/WAIT# handshaking signals. The 32-bit internal data path, write buffer and the Hardware Acceleration Engine provide high performance bandwidth into display memory allowing for fast display updates.

Additionally, products requiring a rotated display can take advantage of the SwivelView™ feature which provides hardware rotation of the display memory transparent to the software application. The S1D13A05 also provides support for "Picture-in-Picture Plus" (a variable size Overlay window).

The S1D13A05, with its integrated USB client, provides impressive support for Palm OS[®] handhelds. However, its impartiality to CPU type or operating system makes it an ideal display solution for a wide variety of applications.

2 Features

2.1 Integrated Frame Buffer

• Embedded 256K byte SRAM display buffer.

2.2 CPU Interface

• Direct support of the following interfaces:

Hitachi SH-4 / SH-3.

Motorola M68xxx (REDCAP2, DragonBall, ColdFire).

Motorola DragonBall SZ Support (66MHz).

Motorola "REDCAP2" - no WAIT# signal.

Generic MPU bus interface with programmable ready (WAIT#).

- "Fixed" low-latency CPU access times.
- Registers are memory-mapped M/R# input selects between memory and register address space.
- The complete 256K byte display buffer is directly and contiguously available through the 18-bit address bus.

2.3 Display Support

- Single-panel, single drive passive displays.
 - 4/8-bit monochrome LCD interface.
 - 4/8/16-bit color LCD interface.
- · Active Matrix TFT interface.
 - 9/12/18-bit interface.
 - Extended TFT interfaces (Type 2, 3, 4)
- 'Direct' support for 18-bit Sharp HR-TFT LCD (or compatible interfaces).
- 'Direct' support for the Casio TFT LCD (or compatible interfaces).

2.4 Display Modes

- 1/2/4/8/16 bit-per-pixel (bpp) color depths.
- Up to 64 gray shades on monochrome passive LCD panels.
- Up to 64K colors on passive panels.
- Up to 64K colors on active matrix LCD panels.
- Example resolutions:

320x320 at a color depth of 16 bpp 160x160 at a color depth of 16 bpp (2 pages) 160x240 at a color depth of 16 bpp

2.5 Display Features

- SwivelViewTM: 90°, 180°, 270° counter-clockwise hardware rotation of display image.
- Picture-in-Picture Plus (PIP⁺): displays a variable size window overlaid over background image.
- Pixel Doubling: independent control of both horizontal and vertical pixel doubling.
 - example usage: 160x160 8 bpp can be expanded to 320x320 8 bpp without any additional memory.
 - supports all color depths.
- Double Buffering/Multi-pages: provides smooth animation and instantaneous screen updates.

2.6 Clock Source

- Three independent clock inputs: CLKI, CLKI2 and USBCLK.
- Flexible clock source selection:
 - internal Bus Clock (BCLK) selected from CLKI, CLKI/2, or CLKI2
 - internal Memory Clock (MCLK) selected from BCLK or BCLK divide ratio (REG[04h)
 - internal Pixel Clock (PCLK) selected from CLKI, CLKI2, MCLK, or BCLK. PCLK can also be divided down from source
- Single clock input possible if USB support not required.

2.7 USB Device

- USB Client, revision 1.1 compliant.
- Dedicated clock input: USBCLK.
- 48MHz crystal oscillator for USBCLK.

2.8 2D Acceleration

• 2D BitBLT engine including:

Write BitBLT Transparent Write BitBLT
Move BitBLT Transparent Move BitBLT
Solid Fill BitBLT Read BitBLT

Pattern Fill BitBLT Color Expansion BitBLT

Move BitBLT with Color Expansion

2.9 Miscellaneous

- Software initiated Video Invert.
- Software initiated Power Save mode.
- General Purpose Input/Output pins are available.
- IO Operates at 3.3 volts \pm 10%.
- Core operates at 2.0 volts \pm 10% or 2.5 volts \pm 10%.
- 121-pin PFBGA package.

3 Typical System Implementation Diagrams

3.1 Typical System Diagrams.

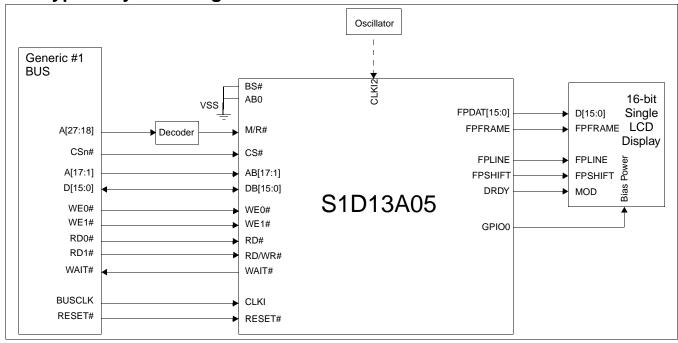


Figure 3-1: Typical System Diagram (Generic #1 Bus)

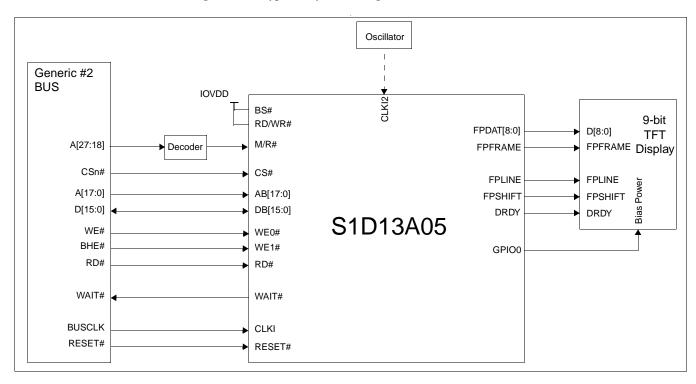


Figure 3-2: Typical System Diagram (Generic #2 Bus)

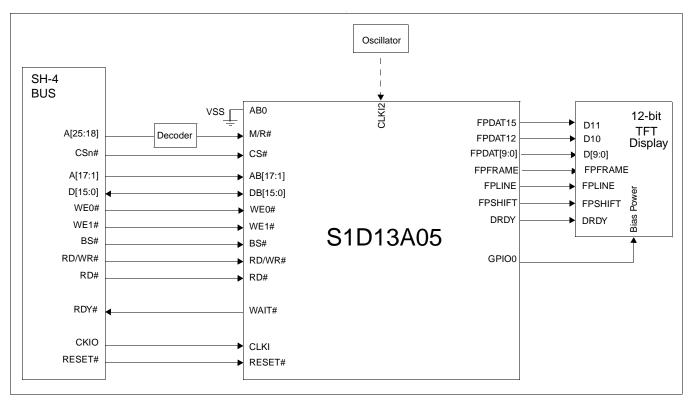


Figure 3-3: Typical System Diagram (Hitachi SH-4 Bus)

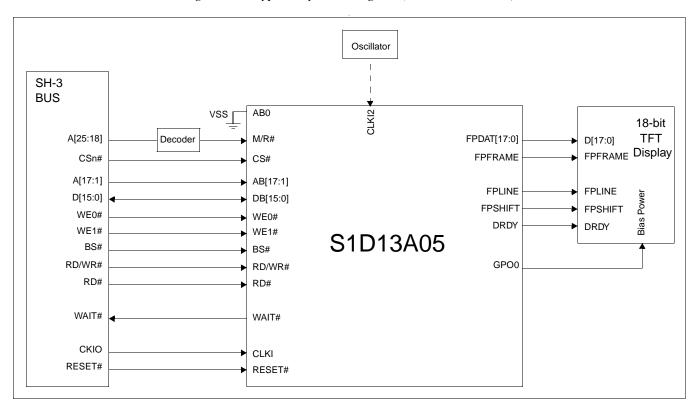


Figure 3-4: Typical System Diagram (Hitachi SH-3 Bus)

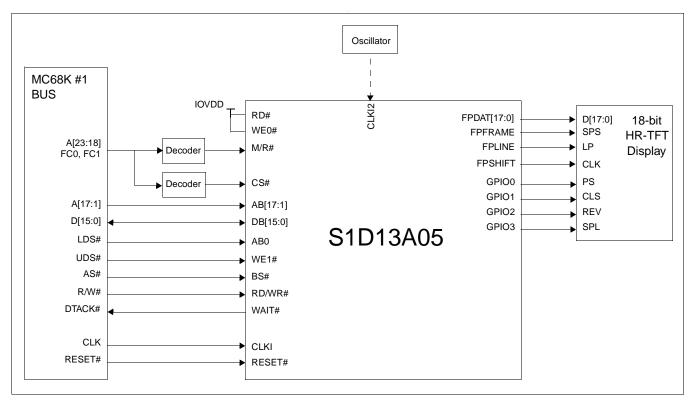


Figure 3-5: Typical System Diagram (MC68K # 1, Motorola 16-Bit 68000)

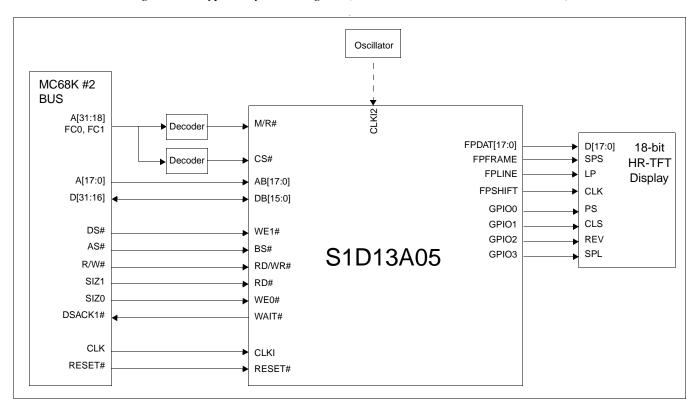


Figure 3-6: Typical System Diagram (MC68K #2, Motorola 32-Bit 68030)

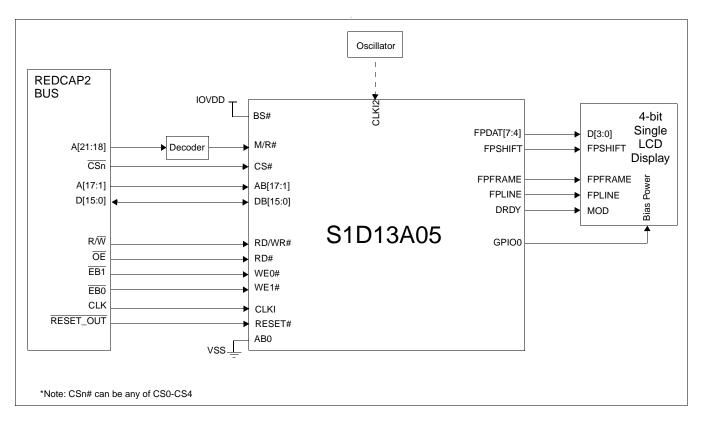


Figure 3-7: Typical System Diagram (Motorola REDCAP2 Bus)

Figure 3-8: Typical System Diagram (Motorola MC68EZ328/MC68VZ328 "DragonBall" Bus)

3.2 USB Interface

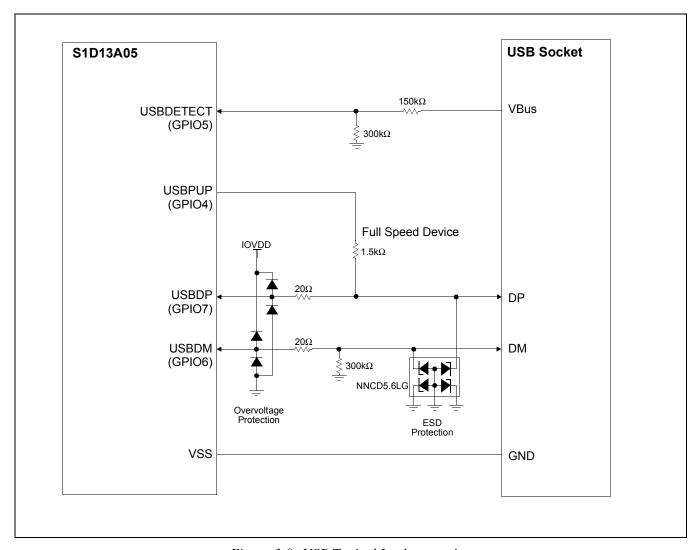


Figure 3-9: USB Typical Implementation

4 Pins

4.1 Pinout Diagram - PFBGA - 121pin

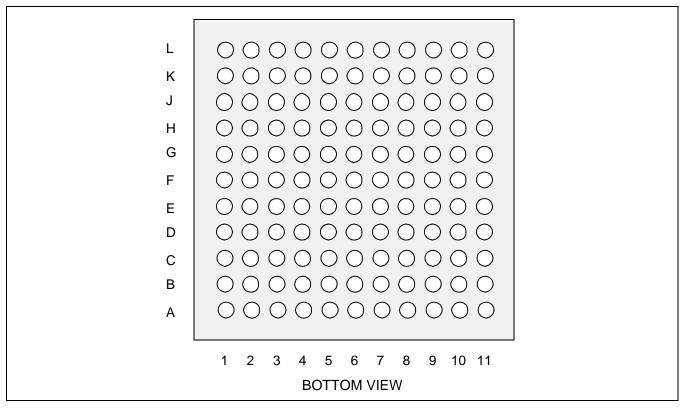


Figure 4-1: Pinout Diagram - PFBGA 121-pin

Table 4-1: PFBGA 121-pin Mapping

L	NC	IOVDD	DB7	DB3	DB0	GPIO7	GPIO3	GPIO0	IOVDD	COREVDD	NC
K	GPO0	VSS	DB8	DB4	DB1	GPIO6	GPIO2	IRQ	DRDY	VSS	GPO6
J	GPO1	DB9	DB6	DB5	DB2	GPO3	GPIO1	USBCLK	FPFRAME	COREVDD	GPO7
Н	DB12	DB11	DB10	DB13	GPO2	IOVDD	GPIO4	GPO5	FPLINE	FPSHIFT	FPDAT0
G	WAIT#	DB15	DB14	IOVDD	VSS	GPIO5	FPDAT5	FPDAT1	FPDAT2	FPDAT3	FPDAT4
F	RESET#	VSS	RD/WR#	WE1#	CLKI	GPO4	FPDAT8	FPDAT6	VSS	FPDAT7	IOVDD
E	RD#	BS#	M/R#	CS#	WE0#	AB13	TESTEN	FPDAT9	FPDAT12	FPDAT11	FPDAT10
D	AB0	AB1	AB2	AB8	AB12	AB17	CNF3	FPDAT13	FPDAT16	FPDAT15	FPDAT14
С	USBOSCO	COREVDD	AB3	AB6	AB9	AB16	CNF2	CNF5	CNF6	FPDAT17	GPO8
В	USBOSCI	VSS	AB5	GPO10	AB10	AB14	CNF1	CNF4	CLKI2	VSS	GPO9
Α	NC	COREVDD	AB4	AB7	AB11	AB15	CNF0	NC	PWMOUT	IOVDD	NC
	1	2	3	4	5	6	7	8	9	10	11

4.2 Pin Descriptions

Key:

1	=	Input
0	=	Output
IO	=	Bi-Directional (Input/Output)
Р	=	Power pin
CI	=	CMOS input
LI	=	LVTTL ^a input
LB2A	=	LVTTL IO buffer (6mA/-6mA@3.3V)
LB3P	=	Low noise LVTTL IO buffer (6mA/-6mA@3.3V)
LO3	=	Low noise LVTTL Output buffer (3mA/-3mA@3.3V)
LB3M	=	Low noise LVTTL IO buffer with input mask (3mA/-3mA@3.3V)
T1	=	Test mode control input with pull-down resistor (typical value of $50 \text{K}\Omega$ at 3.3V)
Hi-Z	=	High Impedance
CUS	=	Custom Cell Type

^a LVTTL is Low Voltage TTL.

4.2.1 Host Interface

Table 4-2: Host Interface Pin Descriptions

Pin Name	PFBGA Pin#	I/O type (see key above)	RESET# State	Description	
AB0	D1	LI	_	 This input pin has multiple functions. For Generic #1, this pin is not used and should be connected to VSS. For Generic #2, this pin inputs system address bit 0 (A0). For SH-3/SH-4, this pin is not used and should be connected to VSS. For MC68K #1, this pin inputs the lower data strobe (LDS#). For MC68K #2, this pin inputs system address bit 0 (A0). For REDCAP2, this pin is not used and should be connected to VSS. For DragonBall, this pin is not used and should be connected to VSS. 	
AB[17:1]	D6,C6,A6, B6,E6,D5, A5,B5,C5, D4,A4,C4, B3,A3,C3, D3,D2	CI	_	System address bus bits 17-1.	
DB[15:0]	L5,K5,J5, L4,K4,J4, J3,L3,K3, J2,H3,H2, H1,H4,G3, G2	LB2A	Hi-Z	 Input data from the system data bus. For Generic #1, these pins are connected to D[15:0]. For Generic #2, these pins are connected to D[15:0]. For SH-3/SH-4, these pins are connected to D[15:0]. For MC68K #1, these pins are connected to D[15:0]. For MC68K #2, these pins are connected to D[31:16] for a 32-bit device (e.g. MC68030) or D[15:0] for a 16-bit device (e.g. MC68340). For REDCAP2, these pins are connected to D[15:0]. For DragonBall, these pins are connected to D[15:0]. 	

Table 4-2: Host Interface Pin Descriptions

Pin Name	PFBGA Pin #	I/O type (see key above)	RESET# State	Description	
				This input pin has multiple functions.	
				 For Generic #1, this pin inputs the write enable signal for the lower data byte (WE0#). 	
				For Generic #2, this pin inputs the write enable signal (WE#)	
WE0#				 For SH-3/SH-4, this pin inputs the write enable signal for data byte 0 (WE0#). 	
VV = O#	E5	LI	_	 For MC68K #1, this pin must be tied to IO V_{DD} 	
				For MC68K #2, this pin inputs the bus size bit 0 (SIZ0).	
				• For REDCAP2, this pin inputs the byte enable signal for the D[7:0] data byte (EB1).	
				 For DragonBall, this pin inputs the byte enable signal for the D[7:0] data byte (LWE). 	
				This input pin has multiple functions.	
		LI	_	 For Generic #1, this pin inputs the write enable signal for the upper data byte (WE1#). 	
				 For Generic #2, this pin inputs the byte enable signal for the high data byte (BHE#). 	
WE1#	F4			 For SH-3/SH-4, this pin inputs the write enable signal for data byte 1 (WE1#). 	
				For MC68K #1, this pin inputs the upper data strobe (UDS#).	
				For MC68K #2, this pin inputs the data strobe (DS#).	
				• For REDCAP2, this pin inputs the byte enable signal for the D[15:8] data byte (EB0).	
				 For DragonBall, this pin inputs the byte enable signal for the D[15:8] data byte (UWE). 	
CS#	E4	CI	_	Chip select input.	
M/R#	E3	LI	_	This input pin is used to select between the display buffer and register address spaces of the S1D13A05. M/R# is set high to access the display buffer and low to access the registers.	
				This input pin has multiple functions.	
		E2 LI		For Generic #1, this pin must be tied to V _{SS} .	
				For Generic #2, this pin must be tied to IO V _{DD} .	
BS#	Eo			For SH-3/SH-4, this pin inputs the bus start signal (BS#).	
55#	LZ			For MC68K #1, this pin inputs the address strobe (AS#).	
				For MC68K #2, this pin inputs the address strobe (AS#).	
				For REDCAP2, this pin must be tied to IO V _{DD} .	
				 For DragonBall, this pin must be tied to IO V_{DD}. 	

Table 4-2: Host Interface Pin Descriptions

Pin Name	PFBGA Pin #	I/O type (see key above)	RESET# State	Description
		·		This input pin has multiple functions. • For Generic #1, this pin inputs the read command for the upper data
RD/WR#	F3	LI	_	 byte (RD1#). For Generic #2, this pin must be tied to IO V_{DD}. For SH-3/SH-4, this pin inputs the RD/WR# signal. The S1D13A05 needs this signal for early decode of the bus cycle. For MC68K #1, this pin inputs the R/W# signal. For MC68K #2, this pin inputs the R/W# signal. For REDCAP2, this pin inputs the R/W signal. For DragonBall, this pin must be tied to IO V_{DD}.
RD#	E1	LI	_	 This input pin has multiple functions. For Generic #1, this pin inputs the read command for the lower data byte (RD0#). For Generic #2, this pin inputs the read command (RD#). For SH-3/SH-4, this pin inputs the read signal (RD#). For MC68K #1, this pin must be tied to IO V_{DD}. For MC68K #2, this pin inputs the bus size bit 1 (SIZ1). For REDCAP2, this pin inputs the output enable (OE). For DragonBall, this pin inputs the output enable (OE).
WAIT#	G1	LB2A	Hi-Z	 During a data transfer, this output pin is driven active to force the system to insert wait states. It is driven inactive to indicate the completion of a data transfer. WAIT# is released to the high impedance state after the data transfer is complete. Its active polarity is configurable. For Generic #1, this pin outputs the wait signal (WAIT#). For Generic #2, this pin outputs the wait request signal (WAIT#). For SH-3 mode, this pin outputs the wait request signal (RDY#). For MC68K #1, this pin outputs the data transfer acknowledge signal (DTACK#). For MC68K #2, this pin outputs the data transfer and size acknowledge bit 1 (DSACK1#). For REDCAP2, this pin is unused (Hi-Z). For DragonBall, this pin outputs the data transfer acknowledge signal (DTACK). Note: This pin should be tied to the inactive voltage level as selected by CNF5, using a pull-up or pull-down resistor. If CNF5 = 1, the WAIT# pin should be tied low using a pull-down resistor. If CNF5 = 0, the WAIT# pin should be tied high using a pull-up resistor. If WAIT# is not used, this pin should be tied either high or low using a pull-up or pull-down resistor.
RESET#	F1	LI	_	Active low input to set all internal registers to the default state and to force all signals to their inactive states.

4.2.2 LCD Interface

Table 4-3: LCD Interface Pin Descriptions

Pin Name	PFBGA Pin#	I/O type (see key above)	RESET# State	Description
FPDAT[17:0]	C10,D9,D10, D11,D8,E9, E10,E11, E8,F7,F10, F8,G7,G11, G10,G9,G8, H11	LB3P	0	Panel Data bits 17-0.
FPFRAME	J9	LB3P	0	This output pin has multiple functions. • Frame Pulse • SPS for HR-TFT • GSRT for Casio • STV for TFT Type 2 • STV for TFT Type 3
FPLINE	H9	LB3P	0	This output pin has multiple functions. • Line Pulse • LP for HR-TFT • GPCK for Casio • STB for TFT Type 2 • LP for TFT Type 3
FPSHIFT	H10	LB3P	0	This output pin has multiple functions. • Shift Clock • DCLK for HR-TFT • CLK for Casio • CLK for TFT Type 2 • CPH for TFT Type 3
DRDY	K9	LO3	0	This output pin has multiple functions. LCD backplane bias signal (MOD) for all other LCD panels 2nd shift clock (FPSHIFT2) for passive LCD with Format 1 interface Display enable (DRDY) for TFT panels MOD for HR-TFT INV for TFT Type 2/3 DRDY for TFT Type 4 General Purpose Output
GPO0	K1	LO3	0	This is a general purpose output
GPO1	J1	LO3	0	This output pin has multiple functions. • When in TFT Type 3 mode, operates as VCOM • General purpose output bit otherwise
GPO2	H5	LO3	0	This output pin has multiple functions. • When in TFT Type 3 mode, operates as XOEV • General purpose output bit otherwise

Table 4-3: LCD Interface Pin Descriptions

Pin Name	PFBGA Pin#	I/O type (see key above)	RESET# State	Description
				This output pin has multiple functions.
GPO3	J6	LO3	0	When in TFT Type 3 mode, operates as CMD
				General purpose output bit otherwise
				This output pin has multiple functions.
GPO4	F6	LO3	0	When in TFT Type 3 mode, operates as PCLK1
				General purpose output bit otherwise
				This output pin has multiple functions.
GPO5	H8	LO3	0	When in TFT Type 3 mode, operates as PCLK2
				General purpose output bit otherwise
				This output pin has multiple functions.
GPO6	K11	LO3	0	When in TFT Type 3 mode, operates as XRESH
				General purpose output bit otherwise
				This output pin has multiple functions.
GPO7	J11	LO3	0	When in TFT Type 3 mode, operates as XRESV
				General purpose output bit otherwise
				This output pin has multiple functions.
GPO8	C11	LO3	0	When in TFT Type 3 mode, operates as XOHV
				General purpose output bit otherwise
				This output pin has multiple functions.
GPO9	B11	LO3	0	When in TFT Type 3 mode, operates as XSTBY
				General purpose output bit otherwise
				This output pin has multiple functions.
GPO10	B4	LO3	0	When in TFT Type 3 mode, operates as PMDE
				General purpose output bit otherwise
				This pin has multiple functions.
				PS for HR-TFT
				POL for Casio
				VCLK for TFT Type 2
GPIO0	L8	LB3M	_	CPV for TFT Type 3
				General purpose IO pin 0 (GPIO0)
				When this pin is used for the above display modes, it must be configured as an output using REG[64h] after every RESET. Otherwise, it defaults to a Hi-Z state after every RESET and must either be configured as an output or be pulled high or low externally to avoid unnecessary current drain.

Table 4-3: LCD Interface Pin Descriptions

Pin Name	PFBGA Pin#	I/O type (see key above)	RESET# State	Description
GPIO1	J7	LB3M	_	This pin has multiple functions. CLS for HR-TFT GRES for Casio AP for TFT Type 2 OE for TFT Type 3 General purpose IO pin 1 (GPIO1) When this pin is used for the above display modes, it must be configured as an output using REG[64h] after every RESET. Otherwise, it defaults to a Hi-Z state after every RESET and must either be configured as an output or be pulled high or low externally to avoid unnecessary current drain.
GPIO2	K7	LB3M	_	This pin has multiple functions. REV for HR-TFT FRP for Casio POL for TFT Type 2/3 General purpose IO pin 2 (GPIO2) When this pin is used for the above display modes, it must be configured as an output using REG[64h] after every RESET. Otherwise, it defaults to a Hi-Z state after every RESET and must either be configured as an output or be pulled high or low externally to avoid unnecessary current drain.
GPIO3	L7	LB3M	_	This pin has multiple functions. • SPL for HR-TFT • STH for Casio • STH for TFT Type 2 • EIO for TFT Type 3 • General purpose IO pin 3 (GPIO3) When this pin is used for the above display modes, it must be configured as an output using REG[64h] after every RESET. Otherwise, it defaults to a Hi-Z state after every RESET and must either be configured as an output or be pulled high or low externally to avoid unnecessary current drain.
GPIO4	H7	LB3M	_	This pin has multiple functions. • USBPUP • General purpose IO pin 4 (GPIO4) This pin is Hi-Z after every RESET and must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain.
GPIO5	G6	LB3M	_	This pin has multiple functions. • USBDETECT • General purpose IO pin 5 (GPIO5) This pin always defaults as an input. When not used as a USBDETECT pin, it must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain.

Table 4-3: LCD Interface Pin Descriptions

Pin Name	PFBGA Pin#	I/O type (see key above)	RESET# State	Description
	GPIO6 K6	CUS	_	This pin has multiple functions.
				• USBDM
GPIO6				General purpose IO pin 6 (GPIO6)
				When not used as a USB connection, this pin defaults to a Hi-Z state after every RESET and must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain.
		cus	_	This pin has multiple functions.
	16			• USBDP
GPIO7				General purpose IO pin 7
51.61				When not used as a USB connection, this pin defaults to a Hi-Z state after every RESET and must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain.
IRQ	K8	LO3	0	This output pin is the IRQ pin for USB. When IRQ is activated, an active high pulse is generated and stays high until the IRQ is serviced by software at REG[404Ah] or REG[404Ch].
	A9	LO3	0	This pin has multiple functions.
PWMOUT				PWM Clock output
				General purpose output

4.2.3 Clock Input

Table 4-4: Clock Input Pin Descriptions

Pin Name	PFBGA Pin#	I/O type (see key above)	RESET# State	Description
CLKI	F5	CI	_	Typically used as input clock source for bus clock and memory clock
CLKI2	B9	CI	_	Optionally used as input clock source for pixel clock
				Used as input clock source for USB.
USBCLK	J8	CI	_	Note: If this pin is not connected to an input clock source, this pin must be connected to VSS.
USBOSCI	B1	ı	_	USB Crystal Oscillator feedback input from crystal. For an example implementation circuit using a crystal oscillator, see Section 16.1, "USB Oscillator Circuit" on page 184.
				Note: If this pin is not connected to a USB Crystal Oscillator, this pin must be connected to VSS.
USBOSCO	C1	0	_	USB Crystal Oscillator output to crystal. For an example implementation circuit using a crystal oscillator, see Section 16.1, "USB Oscillator Circuit" on page 184.

4.2.4 Miscellaneous

Table 4-5: Miscellaneous Pin Descriptions

Pin Name	PFBGA Pin#	I/O type (see key above)	RESET# State	Description
CNF[6:0]	C9,C8,B8, D7,C7,B7, A7	CI	_	These inputs are used to configure the S1D13A05 - see Table 4-7: "Summary of Power-On/Reset Options," on page 32. Note: These pins are used for configuration of the S1D13A05 and must be connected directly to IO V_{DD} or V_{SS} .
TESTEN	E7	T1		Test Enable input used for production test only (has type 1 pull-down resistor with a typical value of $50K\Omega$ at $3.3V$). Note: This pin must be left un-connected.

4.2.5 Power And Ground

Table 4-6: Power And Ground Pin Descriptions

Pin Name	PFBGA Pin#	I/O type (see key above)	KESEI#	Description
IOVDD	L2,G4,H6, L9,A10,F11	Р	_	6 IO V _{DD} pins.
COREVDD	A2,C2,L10, J10	Р	_	4 Core V _{DD.} pins.
VSS	B2,F2,K2, G5,F9,B10, K10	Р	_	7 V _{SS} pins.

4.3 Summary of Configuration Options

These pins are used for configuration of the S1D13A05 and must be connected directly to IOV_{DD} or V_{SS} . The state of CNF[6:0] are latched on the rising edge of RESET#. Changing state at any other time has no effect.

Table 4-7: Summary of Power-On/Reset Options

S1D13A05				Powe	er-On/Reset State
Configuration Input	1 (con	nected to	o IO V _{DD})	0 (connected to V _{SS})
	Select host bus into	erface as	follows:		·
	CNF4	CNF2	CNF1	CNF0	Host Bus
	1	0	0	0	SH-4/SH-3 interface, Big Endian
	0	0	0	0	SH-4/SH-3 interface, Little Endian
	1	0	0	1	MC68K #1, Big Endian
	0	0	0	1	Reserved
	1	0	1	0	MC68K #2, Big Endian
	0	0	1	0	Reserved
CNF4,CNF[2:0]	1	0	1	1	Generic #1, Big Endian
	0	0	1	1	Generic #1, Little Endian
	1	1	0	0	Reserved
	0	1	0	0	Generic #2, Little Endian
	1	1	0	1	REDCAP2, Big Endian
	0	1	0	1	Reserved
	1	1	1	0	DragonBall (MC68EZ328/VZ328/SZ328), Big Endian
	0	1	1	0	Reserved
	X	1	1	1	Reserved
CNF3	Reserved. Must be	set to 1.			
CNF5 (see note)	WAIT# is active hig	gh			WAIT# is active low
CNF6	CLKI to BCLK divid	de ratio 2:	:1		CLKI to BCLK divide ratio 1:1

Note

If CNF5 = 1, the WAIT# pin should be tied low using a pull-down resistor. If CNF5 = 0, the WAIT# pin should be tied high using a pull-up resistor. If WAIT# is not used, this pin should be tied either high or low using a pull-up or pull-down resistor.

4.4 Host Bus Interface Pin Mapping

Table 4-8: Host Bus Interface Pin Mapping

S1D13A05 Pin Name	Generic #1	Generic #2	Hitachi SH-3 /SH-4	Motorola MC68K #1	Motorola MC68K #2	Motorola REDCAP2	Motorola MC68EZ328/ MC68VZ328 DragonBall
AB[17:1]	A[17:1]	A[17:1]	A[17:1]	A[17:1]	A[17:1]	A[17:1]	A[17:1]
AB0	A0 ¹	A0	A0 ¹	LDS#	A0	A0 ¹	A0 ¹
DB[15:0]	D[15:0]	D[15:0]	D[15:0]	D[15:0]	D[15:0] ²	D[15:0]	D[15:0]
CS#	External	Decode	CSn#	External	Decode	CSn	CSX
M/R#				External Decode)		
CLKI	BUSCLK	BUSCLK	CKIO	CLK	CLK	CLK	CLKO
BS#	Connected	d to IOV _{DD}	BS#	AS#	AS#	Connected	d to IOV _{DD}
RD/WR#	RD1#	Connected to IOV _{DD}	RD/WR#	R/W#	R/W#	R/W	Connected to IOV _{DD}
RD#	RD0#	RD#	RD#	Connected to IOV _{DD}	SIZ1	ŌĒ	ŌĒ
WE0#	WE0#	WE#	WE0#	Connected to IOV _{DD}	SIZ0	EB1	LWE
WE1#	WE1#	BHE#	WE1#	UDS#	DS#	EB0	UWE
WAIT#	WAIT#	WAIT#	WAIT#/ RDY#	DTACK#	DSACK1#	N/A	DTACK
RESET#	RESET#	RESET#	RESET#	RESET#	RESET#	RESET_OUT	RESET

¹ A0 for these busses is not used internally by the S1D13A05 and should be connected to V_{SS} . 2 If the target MC68K bus is 32-bit, then these signals should be connected to D[31:16].

4.5 LCD Interface Pin Mapping

Table 4-9: LCD Interface Pin Mapping

		ome Passive anel		Color F	Passive Panel					(Color TFT Panel				
Pin Name	Si	ingle		Format 1	Single Format 2		Generi	c TFT (TFT	Type 1)	Sharp HR-TFT ¹	Casio TFT ¹	TFT Type 2 ¹	TFT Type 3 ¹	TFT Type 4	USB
	4-bit	8-bit	4-bit	8-bit	8-bit	16-Bit	9-bit	12-bit	18-bit	18-bit	18-bit	18-bit	18-bit	18-bit ³	
FPFRAME					FPFRAME					SPS	GSRT	STV	STV	FPFRAME	_
FPLINE					FPLINE					LP	GPCK	STB	LP	FPLINE	_
FPSHIFT					FPSHIFT					DCLK	CLK	CLK	CPH	FPSHIFT	_
DRDY		MOD		FPSHIFT 2	М	OD		DRDY		driven 0	no connect	INV	INV	DRDY	_
FPDAT0	driven 0	D0	driven 0	D0 (B5) ²	D0 (G3) ²	D0 (R6) ²	R2	R3	R5	R5	R5	R5	R5	R5	_
FPDAT1	driven 0	D1	driven 0	D1 (R5) ²	D1 (R3) ²	D1 (G5) ²	R1	R2	R4	R4	R4	R4	R4	R4	_
FPDAT2	driven 0	D2	driven 0	D2 (G4) ²	D2 (B2) ²	D2 (B4) ²	R0	R1	R3	R3	R3	R3	R3	R3	_
FPDAT3	driven 0	D3	driven 0	D3 (B3) ²	D3 (G2) ²	D3 (R4) ²	G2	G3	G5	G5	G5	G5	G5	G5	_
FPDAT4	D0	D4	D0 (R2) ²	D4 (R3) ²	D4 (R2) ²	D8 (B5) ²	G1	G2	G4	G4	G4	G4	G4	G4	_
FPDAT5	D1	D5	D1 (B1) ²	D5 (G2) ²	D5 (B1) ²	D9 (R5) ²	G0	G1	G3	G3	G3	G3	G3	G3	_
FPDAT6	D2	D6	D2 (G1) ²	D6 (B1) ²	D6 (G1) ²	D10 (G4) ²	B2	В3	B5	B5	B5	B5	B5	B5	_
FPDAT7	D3	D7	D3 (R1) ²	D7 (R1) ²	D7 (R1) ²	D11 (B3) ²	B1	B2	B4	B4	B4	B4	B4	B4	_
FPDAT8	driven 0	driven 0	driven 0	driven 0	driven 0	D4 (G3) ²	В0	B1	В3	В3	В3	В3	В3	В3	_
FPDAT9	driven 0	driven 0	driven 0	driven 0	driven 0	D5 (B2) ²	driven 0	R0	R2	R2	R2	R2	R2	R2	_
FPDAT10	driven 0	driven 0	driven 0	driven 0	driven 0	D6 (R2) ²	driven 0	driven 0	R1	R1	R1	R1	R1	R1	_
FPDAT11	driven 0	driven 0	driven 0	driven 0	driven 0	D7 (G1) ²	driven 0	driven 0	R0	R0	R0	R0	R0	R0	_
FPDAT12	driven 0	driven 0	driven 0	driven 0	driven 0	D12 (R3) ²	driven 0	G0	G2	G2	G2	G2	G2	G2	_
FPDAT13	driven 0	driven 0	driven 0	driven 0	driven 0	D13 (G2) ²	driven 0	driven 0	G1	G1	G1	G1	G1	G1	_
FPDAT14	driven 0	driven 0	driven 0	driven 0	driven 0	D14 (B1) ²	driven 0	driven 0	G0	G0	G0	G0	G0	G0	_
FPDAT15	driven 0	driven 0	driven 0	driven 0	driven 0	D15 (R1) ²	driven 0	B0	B2	B2	B2	B2	B2	B2	_
FPDAT16	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	B1	B1	B1	B1	B1	B1	_
FPDAT17	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	driven 0	B0	В0	В0	B0	B0	В0	_
GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	GPIO0	PS	POL	VCLK	CPV	GPIO0	_
GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	GPIO1	CLS	GRES	AP	OE	GPIO1	_
GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	GPIO2	REV	FRP	POL	POL	GPIO2	_
GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	GPIO3	SPL	STH	STH	EIO	GPIO3	_
GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	GPIO4	USBPUP
GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	GPIO5	USBDETECT
GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	GPIO6	USBDM
GPIO7	GPIO7	GPIO7	GPIO7	GPI07	GPIO7	GPIO7	GPIO7	GPIO7	GPIO7	GPI07	GPIO7	GPIO7	GPIO7	GPIO7	USBDP
GPO0							GPO0 (Ger	neral Purpos	e Output)						_
GPO1						GF	PO1						VCOM	GPO1	_
GPO2						GF	PO2						XOEV	GPO2	_
GPO3						GF	PO3						CMD	GPO3	_
GPO4						GF	PO4						PCLK1	GPO4	_
GPO5						GF	PO5						PCLK2	GPO5	_
GPO6						GF	PO6						XRESH	GPO6	_
GPO7						GF	P07						XRESV	GPO7	_
GPO8						GF	PO8						XOHV	GPO8	_
GPO9						GF	PO9						XSTBY	GPO9	_
GPO10						GP	O10						PMDE	GPO10	_
PWMOUT								PWMOUT						•	_

Note

- ¹ GPIO pins which are used by the HR-TFT, Casio, TFT Type 2, and TFT Type 3 interfaces, must be configured as outputs using REG[64h] bits 23-16 after every RESET or power-up.
- ² These pin mappings use signal names commonly used for each panel type, however signal names may differ between panel manufacturers. The values shown in brackets represent the color components as mapped to the corresponding FPDATxx signals at the first valid edge of FPSHIFT. For further FPDATxx to LCD interface mapping, see Section 6.4, "Display Interface" on page 60.
- ³ The S1D13A05 also supports the 9-bit and 12-bit variations of the Type 4 TFT panel.

5 D.C. Characteristics

Note

When applying Supply Voltages to the S1D13A05, Core V_{DD} must be applied to the chip before, or simultaneously with IO V_{DD} , or damage to the chip may result.

Table 5-1: Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
Core V _{DD}	Supply Voltage	V _{SS} - 0.3 to 3.0	V
IO V _{DD}	Supply Voltage	V _{SS} - 0.3 to 4.0	V
V _{IN}	Input Voltage	V _{SS} - 0.3 to IO V _{DD} + 0.5	V
V _{OUT}	Output Voltage	V _{SS} - 0.3 to IO V _{DD} + 0.5	V
T _{STG}	Storage Temperature	-65 to 150	° C
T _{SOL}	Solder Temperature/Time	260 for 10 sec. max at lead	° C

Table 5-2: Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
Cara V	Supply Voltage	V _{SS} = 0 V	1.8 (note 1)	2.0 (note 1)	2.2 (note 1)	V
Core V _{DD}	Supply voltage	$V_{SS} = 0 V$	2.25	2.5	2.75	V
IO V _{DD}	Supply Voltage	V _{SS} = 0 V	3.0	3.3	3.6	V
V	Input Voltage		V_{SS}		IO V _{DD}	V
V_{IN}	Input Voltage		V _{SS}		CORE V _{DD}	
T _{OPR}	Operating Temperature		-40	25	85	° C

1. When Core V_{DD} is 2.0V \pm 10%, the MCLK must be less than or equal to 30MHz (MCLK \leq 30MHz)

Table 5-3: Electrical Characteristics for VDD = 3.3V typical

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{DDS}	Quiescent Current	Quiescent Conditions			170	μΑ
I _{IZ}	Input Leakage Current		-1		1	μΑ
l _{OZ}	Output Leakage Current		-1		1	μΑ
V _{OH}	High Level Output Voltage	VDD = min I _{OH} = -3mA (Type 1) -6mA (Type 2)	V _{DD} - 0.4			V
V _{OL}	Low Level Output Voltage	VDD = min I _{OL} = 3mA (Type 1) 6mA (Type 2)			0.4	V
V _{IH}	High Level Input Voltage	LVTTL Level, V _{DD} = max	2.0			V
V_{IL}	Low Level Input Voltage	LVTTL Level, V _{DD} = min			0.8	V
R _{PD}	Pull Down Resistance	$V_{IN} = V_{DD}$	20	50	120	kΩ
C _I	Input Pin Capacitance				10	pF
Co	Output Pin Capacitance				10	pF
C _{IO}	Bi-Directional Pin Capacitance				10	pF

6 A.C. Characteristics

Conditions: IO $V_{DD} = 3.3V \pm 10\%$ $T_A = -40^{\circ}$ C to 85° C T_{rise} and T_{fall} for all inputs must be ≤ 5 nsec (10% ~ 90%) $C_L = 50 pF$ (Bus/MPU Interface) $C_L = 0 pF$ (LCD Panel Interface)

6.1 Clock Timing

6.1.1 Input Clocks

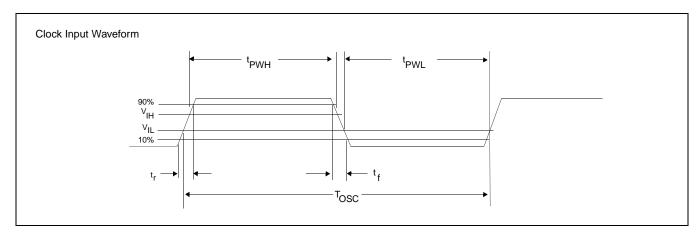


Figure 6-1: Clock Input Requirements

Symbol	Parameter	Min	Max	Units
fosc	Input Clock Frequency (CLKI)		100	MHz
T _{osc}	Input Clock period (CLKI)	1/f _{osc}		ns
t _{PWH}	Input Clock Pulse Width High (CLKI)	4.5		ns
t _{PWL}	Input Clock Pulse Width Low (CLKI)	4.5		ns
t _f	Input Clock Fall Time (10% - 90%)		5	ns
t_	Input Clock Rise Time (10% - 90%)		5	ns

Table 6-1: Clock Input Requirements for CLKI when CLKI to BCLK divide > 1

Note

Maximum internal requirements for clocks derived from CLKI must be considered when determining the frequency of CLKI. See Section 6.1.2, "Internal Clocks" on page 39 for internal clock requirements.

Table 6-2: Clock Input Requirements for CLKI when CLKI to BCLK divide = 1

Symbol	Parameter	Min	Max	Units
f _{osc}	Input Clock Frequency (CLKI)		66	MHz
T _{OSC}	Input Clock period (CLKI)	1/f _{osc}		ns
t _{PWH}	Input Clock Pulse Width High (CLKI)	3		ns
t _{PWL}	Input Clock Pulse Width Low (CLKI)	3		ns
t _f	Input Clock Fall Time (10% - 90%)		5	ns
t _r	Input Clock Rise Time (10% - 90%)		5	ns

Note

Maximum internal requirements for clocks derived from CLKI must be considered when determining the frequency of CLKI. See Section 6.1.2, "Internal Clocks" on page 39 for internal clock requirements.

Table 6-3: Clock Input Requirements for CLKI2

Symbol	Parameter	Min	Max	Units
fosc	Input Clock Frequency (CLKI2)		66	MHz
T _{osc}	Input Clock period (CLKI2)	1/f _{osc}		ns
t _{PWH}	Input Clock Pulse Width High (CLKI2)	3		ns
t _{PWL}	Input Clock Pulse Width Low (CLKI2)	3		ns
t _f	Input Clock Fall Time (10% - 90%)	·	5	ns
t _r	Input Clock Rise Time (10% - 90%)	·	5	ns

Note

Maximum internal requirements for clocks derived from CLKI2 must be considered when determining the frequency of CLKI2. See Section 6.1.2, "Internal Clocks" on page 39 for internal clock requirements.

6.1.2 Internal Clocks

Table 6-4: Internal Clock Requirements

Symbol	Parameter		Min	Max	Units
f _{BCLK}	Bus Clock frequency			66	MHz
4	Mamory Clock fraguency (ago note 1)		30	MHz	
MCLK	Memory Clock frequency (see note 1)		50	MHz	
f _{PCLK}	Pixel Clock frequency			50	MHz
f _{PWMCLK}	PWM Clock frequency			66	MHz

1. MCLK is derived from BCLK, therefore when BCLK is greater than 50MHz, MCLK must be divided using REG[04h] bits 5-4.

Note

For further information on internal clocks, refer to Section 7, "Clocks" on page 94.

6.2 CPU Interface Timing

6.2.1 Generic #1 Interface Timing

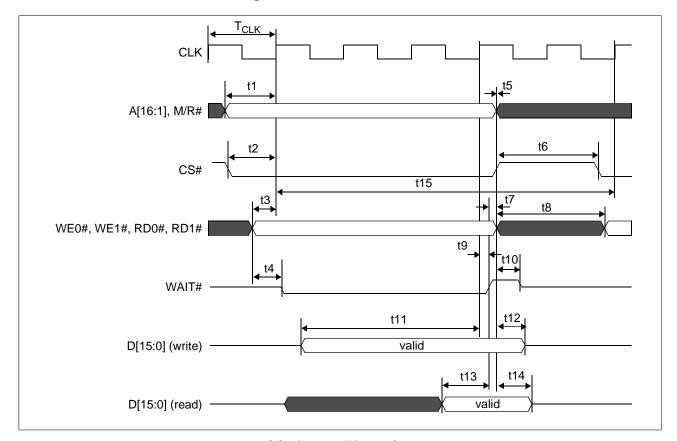


Figure 6-2: Generic #1 Interface Timing

Table 6-5: Generic #1 Interface Timing

Symbol	Parameter	Min	Max	Unit
f _{CLK}	Bus clock frequency		50	MHz
T _{CLK}	Bus clock period	1/f _{CLK}		ns
t1	A[16:1], M/R# setup to first CLK rising edge where CS# = 0 and either RD0#, RD1# = 0 or WE0#, WE1# = 0	0		ns
t2	CS# setup to CLK rising edge	0		ns
t3	RD0#, RD1#, WE0#, WE1# setup to CLK rising edge	0		ns
t4	RD0#, RD1# or WE0#, WE1# state change to WAIT# driven low	3	8	ns
t5	A[16:1], M/R# and CS# hold from RD0#, RD1#, WE0#, WE1# rising edge	0		ns
t6	CS# deasserted to reasserted	0		ns
t7	WAIT# rising edge to RD0#, RD1#, WE0#, WE1# rising edge	0		ns
t8	WE0#, WE1#, RD0#, RD1# deasserted to reasserted	1		T _{CLK}
t9	CLK rising edge to WAIT# rising edge	5	14	ns

Table 6-5: Generic #1 Interface Timing

Symbol	Parameter	Min	Max	Unit
t10	Rising edge of either RD0#, RD1# or WE0#, WE1# to WAIT# high impedance		5	ns
t11	D[15:0] setup to 4th rising CLK edge after CS#=0 and WE0#, WE1#=0	1		T _{CLK}
t12	D[15:0] hold from WE0#, WE1# rising edge (write cycle)	0		ns
t13	D[15:0] valid to WAIT# rising edge (read cycle)	0.5		T _{CLK}
t14	D[15:0] hold from RD0#, RD1# rising edge (read cycle)	2		ns
t15	Cycle Length	6		T _{CLK}

Table 6-6: Generic #1 Interface Truth Table for Little Endian

WE0#	WE1#	RD0#	RD1#	D[15:8]	D[7:0]	Comments
0	0	1	1	valid	valid	16-bit write
0	1	1	1	-	valid	8-bit write; data on low byte (even byte address ¹)
1	0	1	1	valid	-	8-bit write; data on high byte (odd byte address ¹)
1	1	0	0	valid	valid	16-bit read
1	1	0	1	-	valid	8-bit read; data on low byte (even byte address ¹)
1	1	1	0	valid	-	8-bit read; data on high byte (odd byte address ¹)

Table 6-7: Generic #1 Interface Truth Table for Big Endian

WE0#	WE1#	RD0#	RD1#	D[15:8]	D[7:0]	Comments
0	0	1	1	valid	valid	16-bit write
0	1	1	1	-	valid	8-bit write; data on low byte (odd byte address ¹)
1	0	1	1	valid	-	8-bit write; data on high byte (even byte address ¹)
1	1	0	0	valid	valid	16-bit read
1	1	0	1	-	valid	8-bit read; data on low byte (odd byte address ¹)
1	1	1	0	valid	-	8-bit read; data on high byte (even byte address ¹)

1. Because A0 is not used internally, all addresses are seen by the S1D13A05 as even addresses (16-bit word address aligned on even byte addresses).

6.2.2 Generic #2 Interface Timing

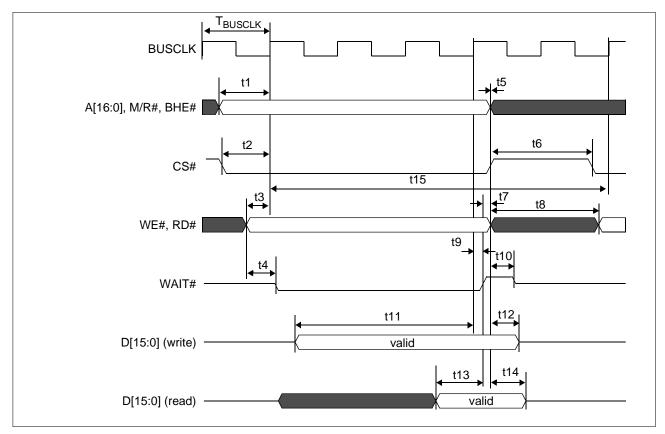


Figure 6-3: Generic #2 Interface Timing

Table 6-8: Generic #2 Interface Timing

Symbol	Parameter	Min	Max	Unit
f _{BUSCLK}	Bus clock frequency		50	MHz
T _{BUSCLK}	Bus clock period	1/f _{BUSCLK}		ns
t1	A[16:0], M/R#, BHE# setup to first BUSCLK rising edge where CS# = 0 and either RD# = 0 or WE# = 0	0		ns
t2	CS# setup to BUSCLK rising edge	0		ns
t3	RD#, WE# setup to BUSCLK rising edge	0		ns
t4	RD# or WE# state change to WAIT# driven low	3	9	ns
t5	A[16:0], M/R#, BHE# and CS# hold from RD#, WE# rising edge	0		ns
t6	CS# deasserted to reasserted	0		ns
t7	WAIT# rising edge to RD#, WE# rising edge	0		ns
t8	WE#, RD# deasserted to reasserted	1		T _{BUSCLK}
t9	WAIT# rising edge after BUSCLK rising edge	5	14	ns
t10	Rising edge of either RD# or WE# to WAIT# high impedance		7	ns
t11	D[15:0] setup to 4th rising BUSCLK edge after CS#=0 and WE#=0	1		T _{BUSCLK}
t12	D[15:0] hold from WE# rising edge (write cycle)	0		ns
t13	D[15:0] valid to WAIT# rising edge setup (read cycle)	0.5		T _{BUSCLK}
t14	D[15:0] hold from RD# rising edge (read cycle)	2		ns
t15	Cycle Length	6		T _{BUSCLK}

Table 6-9: Generic #2 Interface Truth Table for Little Endian

WE#	RD#	BHE#	A0	D[15:8]	D[7:0]	Comments	
0	1	0	0	valid	valid	16-bit write	
0	1	1	0	-	valid	8-bit write at even address	
0	1	0	1	valid	-	8-bit write at odd address	
1	0	0	0	valid	valid	16-bit read	
1	0	1	0	-	valid	8-bit read at even address	
1	0	0	1	valid	-	8-bit read at odd address	

6.2.3 Hitachi SH-3 Interface Timing

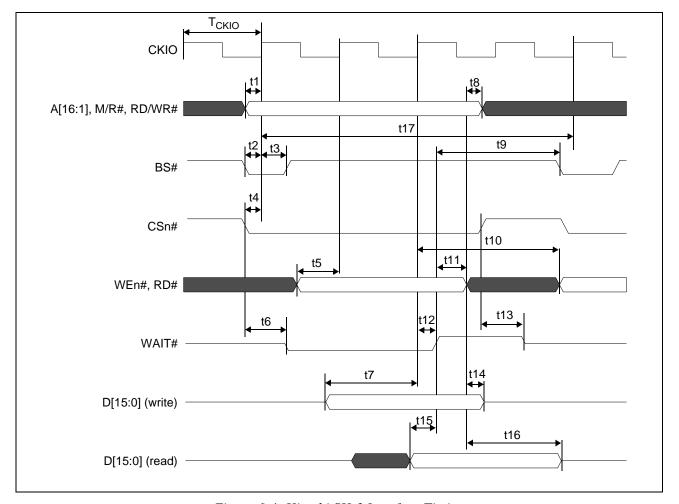


Figure 6-4: Hitachi SH-3 Interface Timing

Note

A minimum of one software wait state is required.

Table 6-10: Hitachi SH-3 Interface Timing

Symbol	Parameter	Min	Max	Unit
f _{CKIO}	Bus clock frequency		66	MHz
T _{CKIO}	Bus clock period	1/f _{CKIO}		ns
t1	A[16:1], RD/WR# setup to CKIO	0		ns
t2	BS# setup	0		ns
t3	BS# hold	9		ns
t4	CSn# setup	0		ns
t5	WEn#, RD# setup to next CKIO after BS# low	0		ns
t6	Falling edge CSn# to WAIT# driven low	4	9	ns
t7	D[15:0] setup to 3rd CKIO rising edge after BS# deasserted (write cycle)	1		ns
t8	WE#, RD# deasserted to A[16:1], M/R#, RD/WR# deasserted	0		ns
t9	Rising edge of WAIT# to BS# falling	T _{CKIO} + 16		ns
t10	CKIO rising edge before WAIT# deasserted to WEn#, RD# asserted for next cycle	2		T _{CKIO}
t11	Rising edge of WAIT# to WE#, RD# deasserted	0		ns
t12	WAIT# rising edge after CKIO rising edge	5	14	ns
t13	Rising edge of CSn# to WAIT# high impedance		6	ns
t14	D[15:0] hold from WEn# deasserted (write cycle)	0		ns
t15	D[15:0] setup to WAIT# rising edge (read cycle)	0.5		T _{CKIO}
t16	Rising edge of RD# to D[15:0] high impedance (read cycle)	3	7	ns
t17	Cycle Length	5		T _{CKIO}

1. The S1D13A05 requires 2ns of write data hold time.

6.2.4 Hitachi SH-4 Interface Timing

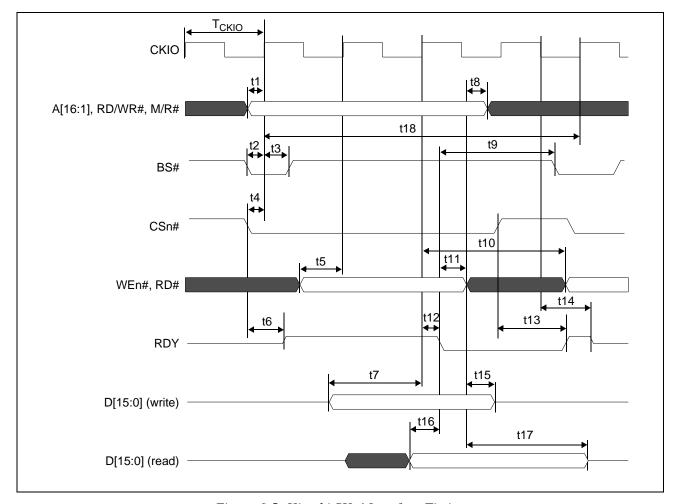


Figure 6-5: Hitachi SH-4 Interface Timing

Note

A minimum of one software wait state is required.

Table 6-11: Hitachi SH-4 Interface Timing

Symbol	Parameter	Min	Max	Unit
f _{CKIO}	Bus clock frequency		66	MHz
T _{CKIO}	Bus clock period	1/f _{CKIO}		ns
t1	A[16:1], M/R#, RD/WR# setup to CKIO	0		ns
t2	BS# setup	0		ns
t3	BS# hold	9		ns
t4	CSn# setup	0		ns
t5	WEn#, RD# setup to 1st CKIO rising edge after BS# low	0		ns
t6	Falling edge CSn# to RDY driven high	3	7	ns
t7	D[15:0] setup to 3rd CKIO rising edge after BS# deasserted (write cycle)	1		ns
t8	WE#,RD# deasserted to A[16:1],M/R#,RD/WR# deasserted	0		ns
t9	RDY falling edge to BS# falling	T _{CKIO} + 11		ns
t10	CKIO rising edge before RDY deasserted to WEn#, RD# asserted for next cycle	2		T _{CKIO}
t11	RDY falling edge to WE#,RD# deasserted	0		ns
t12	RDY falling edge after CKIO rising edge	5	14	ns
t13	Rising edge CSn# to RDY rising edge	4	10	ns
t14	CKIO falling edge to RDY tristate	4	12	ns
t15	D[15:0] hold from WEn# deasserted (write cycle)	0		ns
t16	D[15:0] valid setup to RDY falling edge (read cycle)	0.5		T _{CKIO}
t17	Rising edge of RD# to D[15:0] high impedance (read cycle)	2	7	ns
t18	Cycle Length	4		T _{CKIO}

6.2.5 Motorola MC68K #1 Interface Timing

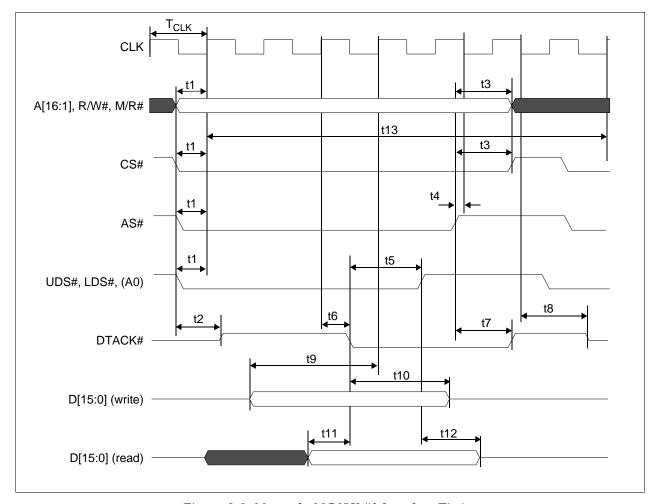


Figure 6-6: Motorola MC68K #1 Interface Timing

Table 6-12: Motorola MC68K#1 Interface Timing

Symbol	Parameter	Min	Max	Unit
f _{CLK}	Bus clock frequency		50	MHz
T _{CLK}	Bus clock period	1/f _{CLK}		ns
t1	A[16:1], M/R#, R/W# and CS# and AS# and UDS#, LDS# setup to first CLK rising edge	1		ns
t2	CS# and AS# asserted to DTACK# driven	2	7	ns
t3	A[16:1], M/R#, R/W# and CS# hold from AS# rising edge	0		ns
t4	AS# rising edge to CLK falling edge	1		ns
t5	DTACK# falling edge to UDS#, LDS# rising edge	0		ns
t6	CLK rising edge to DTACK# falling edge	5	14	ns
t7	AS# rising edge to DTACK# rising edge	3	9	ns
t8	1st CLK falling edge after AS# deasserted to DTACK# high impedance		0.5 T _{CLK} + 12	ns
t9	D[15:0] valid to 4th CLK rising edge where CS# = 0, AS# = 0 and either UDS# = 0 or LDS# = 0 (write cycle)	1		T _{CLK}
t10	D[15:0] hold from DTACK# falling edge (write cycle)	0		ns
t11	D[15:0] valid setup time to DTACK# goes low (read cycle)	0.5		T _{CLK}
t12	UDS#, LDS# rising edge to D[15:0] high impedance (read cycle)	2		ns
t13	Cycle Length	7		T _{CLK}

6.2.6 Motorola MC68K #2 Interface Timing

Figure 6-7: Motorola MC68K #2 Interface Timing

Table 6-13: Motorola MC68K#2 Interface Timing

Symbol	Parameter	Min	Max	Unit
f _{CLK}	Bus clock frequency		50	MHz
T _{CLK}	Bus clock period	1/f _{CLK}		ns
t1	A[16:0], M/R#, R/W#, SIZ[1:0] and CS# and AS# and DS# setup to first CLK rising edge	0		ns
t2	CS# and AS# asserted low to DSACK1# driven	2	7	ns
t3	A[16:1], M/R#, R/W#, SIZ[1:0] hold from AS# rising edge	0		ns
t4	CS# hold from AS# rising edge	0		ns
t5	DS# rising edge to AS# rising edge	0		ns
t6	AS# setup to CLK falling edge	1		ns
t7	DSACK1# falling edge to DS# rising edge	0		ns
t8	CLK rising edge to DSACK1# falling edge	5	14	ns
t9	AS# rising edge to DSACK1# rising edge	3	9	ns
t10	1st CLK falling edge after AS# deasserted to DSACK1# high impedance		T _{CLK} + 3	ns
t11	D[15:0] setup to 4th CLK rising edge after CS#=0, AS#=0, DS#=0, and DSACK1#=0	1		T _{CLK}
t12	D[15:0] hold from DSACK1# falling edge	0		ns
t13	D[15:0] valid setup to DSACK1# falling edge (read cycle)	0.5		T _{CLK}
t14	DS# rising edge to D[15:0] high impedance (read cycle)	2	9	ns
t15	Cycle Length	7		T _{CLK}

6.2.7 Motorola REDCAP2 Interface Timing

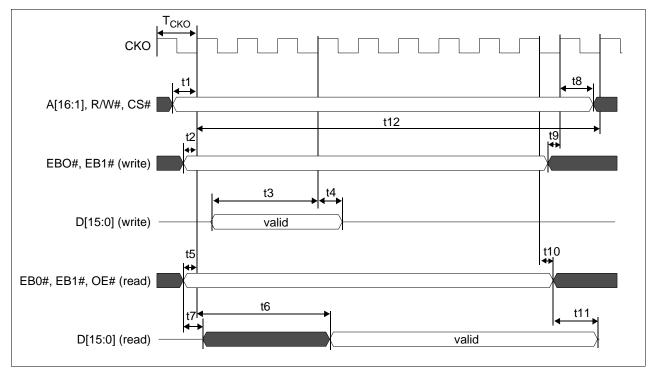


Figure 6-8: Motorola Redcap2 Interface Timing

Table 6-14: Motorola Redcap2 Interface Timing

Symbol	Parameter	Min	Max	Unit
f _{CKO}	Bus clock frequency		17	MHz
T _{CKO}	Bus clock period	1/f _{CKO}		ns
t1	A[16:1], R/W, CSn# setup to CKO rising edge	0		ns
t2	EB0,EB1 setup to CKO rising edge (write)	0		ns
t3	D[15:0] input setup to 4th CKO rising edge after CSn# and $\overline{\text{EB0}}$ or $\overline{\text{EB1}}$ asserted low (write cycle)	1		T _{CKO}
t4	\overline{D} [15:0] input hold from 4th CKO rising edge after CSn# and $\overline{EB0}$ or $\overline{EB1}$ asserted low (write cycle)	7		ns
t5	EB0,EB1,OE setup to CKO rising edge (read cycle)	0		ns
t6a	1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to D[15:0] valid for MCLK = BCLK (read cycle)		6T _{CKO} +17	ns
t6b	1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to D[15:0] valid for MCLK = BCLK ÷ 2 (read cycle)		9T _{CKO} +17	ns
t6c	1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to D[15:0] valid for MCLK = BCLK ÷ 3 (read cycle)		12T _{CKO} +17	ns
t6d	1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to D[15:0] valid for MCLK = BCLK ÷ 4 (read cycle)		15T _{CKO} +17	ns
t7	EB0, EB1, OE falling edge to D[15:0] driven (read cycle)	2	9	ns
t8	A[16:1], R/W, CSn hold from CKO rising edge	0		ns
t9	EB0, EB1 setup to CKO rising edge (write cycle)	1		ns
t10	CKO falling edge to EB0, EB1, OE deasserted (read)	0		ns
t11	OE, EB0, EB1 deasserted to D[15:0] output high impedance (read)	2	8	ns
t12	Cycle Length (note 1)	_		T _{CKO}

The cycle length for the REDCAP interface is fixed at 10 T_{CKO}.
 The Read and Write 2D BitBLT functions are not available when using the REDCAP interface.

6.2.8 Motorola Dragonball Interface Timing with DTACK

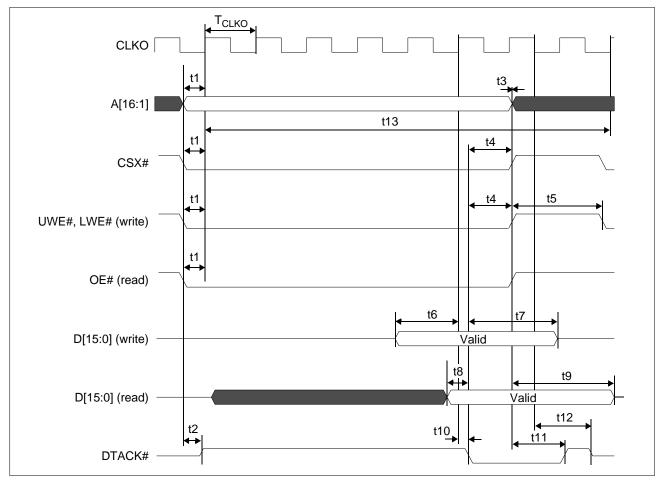


Figure 6-9: Motorola Dragonball Interface Timing with \overline{DTACK}

Table 6-15: Motorola Dragonball Interface Timing with \overline{DTACK}

Symbol	Parameter	Min	Max	Unit
f _{CLKO}	Clock frequency		66 (note 1)	MHz
T _{CLKO}	Clock period	1/f _{CLKO}		ns
t1	A[16:1], $\overline{\text{CSX}}$, $\overline{\text{UWE}}$, $\overline{\text{LWE}}$, $\overline{\text{OE}}$ setup to CLKO rising edge	1		ns
t2	CSX asserted low to DTACK driven	2	7	ns
t3	A[16:1] hold from $\overline{\text{CSX}}$ rising edge	0		ns
t4	DTACK falling edge to UWE, LWE and CSX rising edge	0		ns
t5	UWE, LWE deasserted to reasserted	1		T _{CLKO}
t6	D[15:0] valid to fourth CLKO rising edge where $\overline{\text{CSX}} = 0$ and $\overline{\text{UWE}} = 0$ or $\overline{\text{LWE}} = 0$ (write cycle)	1		T _{CLKO}
t7	D[15:0] hold from DTACK falling edge (write cycle)	0		ns
t8	D[15:0] valid setup to DTACK falling edge (read cycle)	0.5		T _{CLKO}
t9	CSX rising edge to D[15:0] high impedance (read cycle)	2	6	ns
t10	CLKO rising edge to DTACK# falling edge	5	14	ns
t11	CSX rising edge to DTACK rising edge	3	9	ns
t12	First CLKO falling edge after deassertion of CSX# to DTACK# high impedance	0.5T _{CLKO} + 4	0.5T _{CLKO} + 8	ns
t13	Cycle Length	8		T _{CLKO}

The MC68SZ328 with a maximum clock frequency of 66MHz is supported. The MC68VZ328 with a maximum clock frequency of 33MHz is supported. The MC68EZ328 with a maximum clock frequency of 16MHz is supported.

6.2.9 Motorola Dragonball Interface Timing w/o DTACK

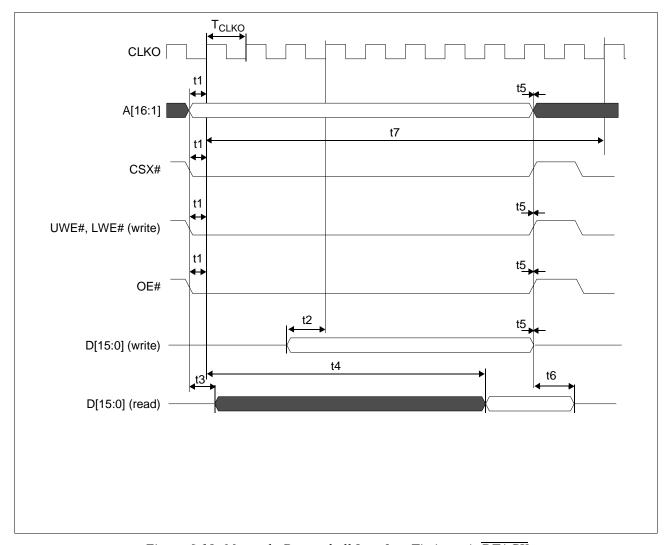
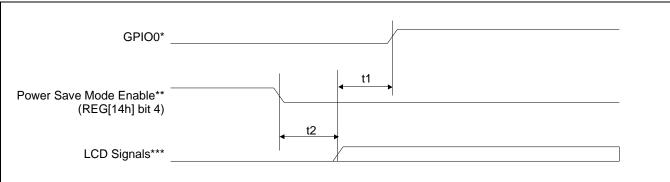


Figure 6-10: Motorola Dragonball Interface Timing w/o \overline{DTACK}


Table 6-16: Motorola Dragonball Interface Timing w/o DTACK

Symbol	Parameter	Min	Max	Unit
f _{CLKO}	Bus clock frequency		33 (note 1)	MHz
T _{CLKO}	Bus clock period	1/f _{CLKO}		ns
t1	A[16:1] and CSX# and UWE#, LWE# and OE# setup to CLKO rising edge			ns
t2	D[15:0] valid to 4th CLK rising edge where CSX# = 0 and UWE# = 0 or LWE# = 0 (write cycle)	1		T _{CLKO}
t3	CSX# and OE# asserted low to D[15:0] driven (read cycle)	2	8	ns
t4a	1st CLKO rising edge after CSX# and OE# asserted to D[15:0] valid for MCLK=BCLK (read cycle)		7	T _{CLKO}
t4b	1st CLKO rising edge after CSX# and OE# asserted to D[15:0] valid for MCLK=BCLK ÷ 2 (read cycle)	1		T _{CLKO}
t4c	1st CLKO rising edge after CSX# and OE# asserted to D[15:0] valid for MCLK=BCLK ÷ 3 (read cycle) (see note 2)			T _{CLKO}
t5	A[16:1] and UWE#, LWE# and OE# and D[15:0] (write) hold from CSX# rising edge	0		ns
t6	CSX# rising edge to D[15:0] high impedance	2	8	ns
t7	Cycle Length (see note 3)			T _{CLKO}

- 1. The MC68VZ328 with a maximum clock frequency of 33MHz is supported. The MC68EZ328 with a maximum clock frequency of 16MHz is supported.
- 2. The MC68EZ328 does not support the MCLK = BCLK ÷ 3 and MCLK = BCLK ÷ 4 options. The MC68VZ328 does not support the MCLK = BCLK ÷ 4 option.
- 3. The cycle length for the Dragonball w/o $\overline{\text{DTACK}}$ interface is fixed at 10 T_{CLKO}.
- 4. The Read and Write 2D BitBLT functions are not available when using the Dragonball w/o DTACK interface.

6.3 LCD Power Sequencing

6.3.1 Passive/TFT Power-On Sequence

^{*}It is recommended to use the general purpose IO pin GPIO0 to control the LCD bias power.

Figure 6-11: Passive/TFT Power-On Sequence Timing

Table 6-17: Passive/TFT Power-On Sequence Timing

Symbol	Parameter	Min	Max	Units
t1	LCD signals active to LCD bias active	Note 1	Note 1	
t2	Power Save Mode disabled to LCD signals active	0	1	BCLK

1. t1 is controlled by software and must be determined from the bias power supply delay requirements of the panel connected.

^{**}The LCD power-on sequence is activated by programming the Power Save Mode Enable bit (REG[14h] bit 4) to 0.

^{***}LCD Signals include: FPDAT[17:0], FPSHIFT, FPLINE, FPFRAME, and DRDY.

6.3.2 Passive/TFT Power-Off Sequence

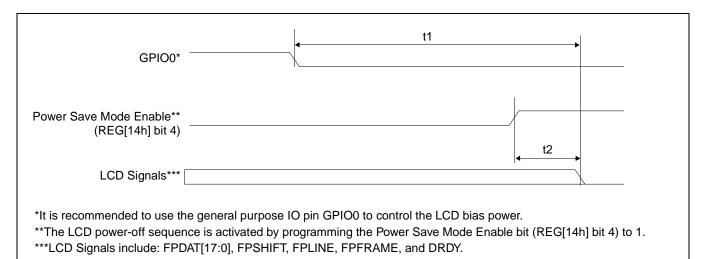


Figure 6-12: Passive/TFT Power-Off Sequence Timing

Table 6-18: Passive/TFT Power-Off Sequence Timing

Symbol	Parameter	Min	Max	Units
t1	LCD bias deactivated to LCD signals inactive Note 1 Note 1			
t2	Power Save Mode enabled to LCD signals low	0	1	BCLK

1. t1 is controlled by software and must be determined from the bias power supply delay requirements of the panel connected.

6.4 Display Interface

The timing parameters required to drive a flat panel display are shown below. Timing details for each supported panel type are provided in the remainder of this section.

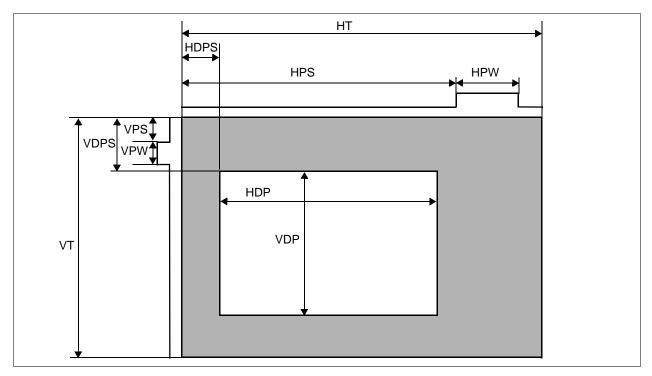


Figure 6-13: Panel Timing Parameters

Table 6-19: Panel Timing Parameter	Definition and Register Summary
------------------------------------	---------------------------------

Symbol	Description	Derived From	Units
HT	Horizontal Total	((REG[20h] bits 6-0) + 1) x 8	
HDP ¹	Horizontal Display Period ¹	((REG[24h] bits 6-0) + 1) x 8	
HDPS	Horizontal Dienlay Pariod Start Position 1	For STN panels: ((REG[28h] bits 9-0) + 22)	Ts
l ibi 3		For TFT panels: ((REG[28h] bits 9-0) + 5)	13
HPS	FPLINE Pulse Start Position	(REG[2Ch] bits 9-0) + 1	
HPW	FPLINE Pulse Width	(REG[2Ch] bits 22-16) + 1	
VT	Vertical Total	(REG[30h] bits 9-0) + 1	
VDP	Vertical Display Period	(REG[34h] bits 9-0) + 1	
VDPS	Vertical Display Period Start Position	REG[38h] bits 9-0	Lines (HT)
VPS	FPFRAME Pulse Start Position	REG[2Ch] bits 9-0	
VPW	FPFRAME Pulse Width	(REG[3Ch] bits 18-16) + 1	

- 1. For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16. For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8.
- 2. The following formulas must be valid for all panel timings:

HDPS + HDP < HT VDPS + VDP < VT

6.4.1 Generic STN Panel Timing

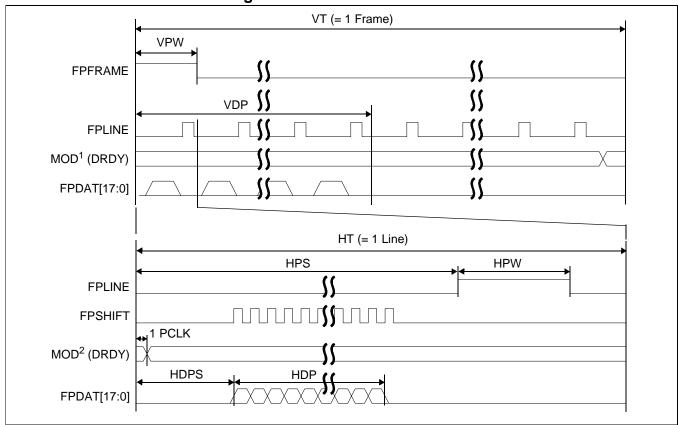


Figure 6-14: Generic STN Panel Timing

= [(REG[30h] bits 9-0) + 1] lines

```
VPS
          = FPFRAME Pulse Start Position
                                                  = 0 lines, because REG[2Ch] bits 9-0 = 0
VPW
          = FPFRAME Pulse Width
                                                  = [(REG[3Ch] bits 18-16) + 1] lines
VDPS
          = Vertical Display Period Start Position
                                                  = 0 lines, because REG[38h] bits 9-0=0
VDP
          = Vertical Display Period
                                                  = [(REG[34h] bits 9-0) + 1] lines
HT
          = Horizontal Total
                                                  = [((REG[20h] bits 6-0) + 1) \times 8] pixels
HPS
          = FPLINE Pulse Start Position
                                                  = [(REG[2Ch] bits 9-0) + 1] pixels
HPW
          = FPLINE Pulse Width
                                                  = [(REG[2Ch] bits 22-16) + 1] pixels
HDPS
          = Horizontal Display Period Start Position= 22 pixels, because REG[28h] bits 9-0 = 0
HDP
          = Horizontal Display Period
                                                  = [((REG[24h] bits 6-0) + 1) \times 8] pixels
*For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16.
*HPS should comply with the following formula:
          HPS > HDP + 22
          HPS + HPW < HT
```

= Vertical Total

VT

^{*}Panel Type Bits (REG[0Ch] bits 1-0) = 00b (STN)

^{*}FPFRAME Pulse Polarity Bit (REG[3Ch] bit 23) = 1 (active high)

^{*}FPLINE Polarity Bit (REG[2Ch] bit 23) = 1 (active high)

^{*}MOD¹ is the MOD signal when REG[0Ch] bits 21-16 = 0 (MOD toggles every FPFRAME)

^{*}MOD² is the MOD signal when REG[0Ch] bits 21-16 = n (MOD toggles every n FPLINE)

6.4.2 Single Monochrome 4-Bit Panel Timing



Figure 6-15: Single Monochrome 4-Bit Panel Timing

VDP = Vertical Display Period = (REG[34h] bits 9:0) + 1 Lines

VNDP = Vertical Non-Display Period

= VT - VDP

= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines

HDP = Horizontal Display Period

= ((REG[24h] bits 6:0) + 1) x 8Ts

HNDP = Horizontal Non-Display Period

= HT - HDP

 $= (((REG[20h] bits 6:0) + 1) \times 8Ts) - (((REG[24h] bits 6:0) + 1) \times 8Ts)$

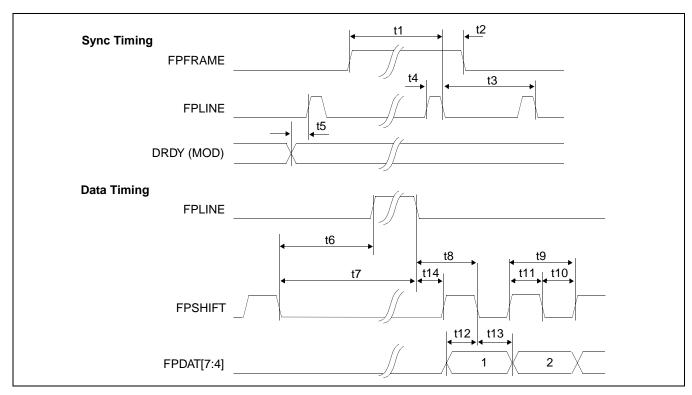


Figure 6-16: Single Monochrome 4-Bit Panel A.C. Timing

Table 6-20: Single Monochrome 4-Bit Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7			Ts
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 + 2			Ts
t9	FPSHIFT period	4			Ts
t10	FPSHIFT pulse width low	2			Ts
t11	FPSHIFT pulse width high	2			Ts
t12	FPDAT[7:4] setup to FPSHIFT falling edge	1			Ts
t13	FPDAT[7:4] hold to FPSHIFT falling edge	2			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

- 1. Ts = pixel clock period
- $2. \quad t1_{min}$
- $= HPS + t4_{min}$ $= t3_{min} (HPS + t4_{min})$ 3. t2_{min}
- t3_{min} = HT
- t4_{min} 5. = HPW
- = HPS 1 6. t5_{min}
- = HPS (HDP + HDPS) + 2, if negative add t3_{min} 7. t6_{min}
- 8. $t14_{min}$ = HDPS (HPS + $t4_{min}$), if negative add $t3_{min}$

6.4.3 Single Monochrome 8-Bit Panel Timing

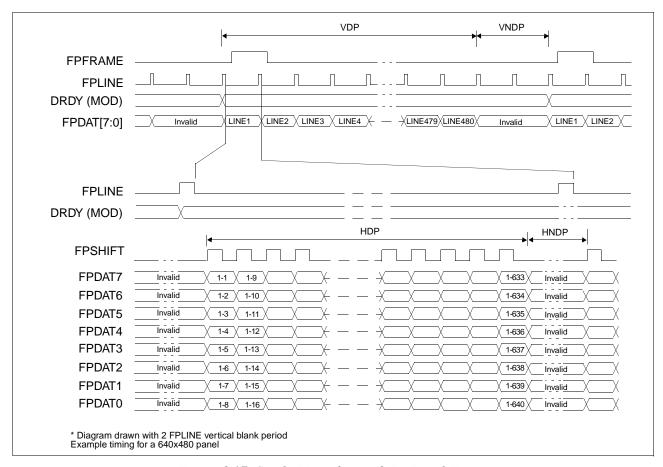


Figure 6-17: Single Monochrome 8-Bit Panel Timing

VDP = Vertical Display Period

= (REG[34h] bits 9:0) + 1 Lines

VNDP = Vertical Non-Display Period

= VT - VDP

= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines

HDP = Horizontal Display Period

= ((REG[24h] bits 6:0) + 1) x 8Ts

HNDP = Horizontal Non-Display Period

= HT - HDP

 $= (((REG[20h] bits 6:0) + 1) \times 8Ts) - (((REG[24h] bits 6:0) + 1) \times 8Ts)$

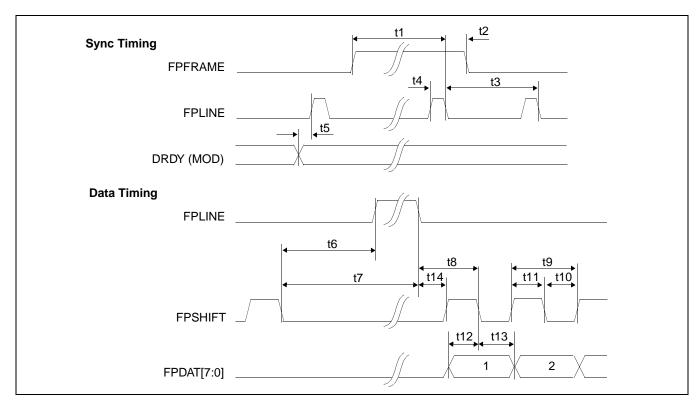


Figure 6-18: Single Monochrome 8-Bit Panel A.C. Timing

Table 6-21: Single Monochrome 8-Bit Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7			Ts
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 + 4			Ts
t9	FPSHIFT period	8			Ts
t10	FPSHIFT pulse width low	4			Ts
t11	FPSHIFT pulse width high	4			Ts
t12	FPDAT[7:0] setup to FPSHIFT falling edge	4			Ts
t13	FPDAT[7:0] hold to FPSHIFT falling edge	4			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

- 1. Ts = pixel clock period
- 2. t1_{min}
- $= HPS + t4_{min}$ $= t3_{min} (HPS + t4_{min})$ 3. t2_{min}
- 4. t3_{min} = HT
- = HPW 5. t4_{min}
- 6. t5_{min} = HPS - 1
- 7. $t6_{min}$ = HPS (HDP + HDPS) + 4, if negative add $t3_{min}$ 8. $t14_{min}$ = HDPS (HPS + $t4_{min}$), if negative add $t3_{min}$

6.4.4 Single Color 4-Bit Panel Timing

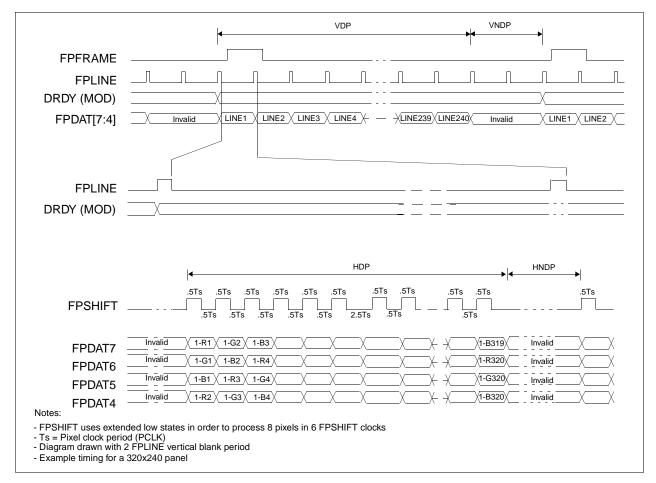


Figure 6-19: Single Color 4-Bit Panel Timing

VDP = Vertical Display Period
= (REG[34h] bits 9:0) + 1 Lines

VNDP = Vertical Non-Display Period
= VT - VDP
= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines

HDP = Horizontal Display Period
= ((REG[24h] bits 6:0) + 1) x 8Ts

HNDP = Horizontal Non-Display Period
= HT - HDP
= (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts)

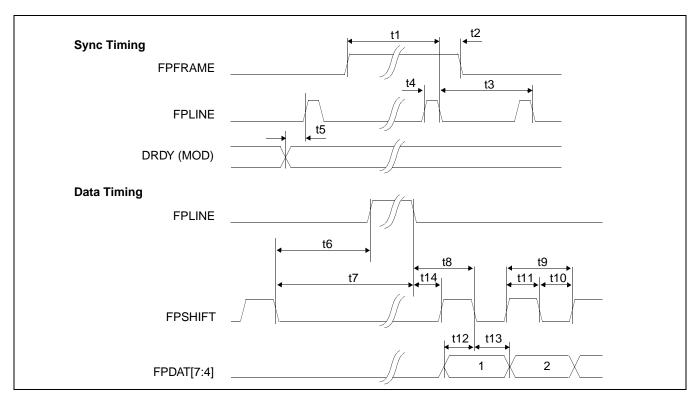


Figure 6-20: Single Color 4-Bit Panel A.C. Timing

Table 6-22: Single Color 4-Bit Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7			Ts
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 + 0.5			Ts
t9	FPSHIFT period	1			Ts
t10	FPSHIFT pulse width low	0.5			Ts
t11	FPSHIFT pulse width high	0.5			Ts
t12	FPDAT[7:4] setup to FPSHIFT falling edge	0.5			Ts
t13	FPDAT[7:4] hold to FPSHIFT falling edge	0.5			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

- 1. Ts = pixel clock period
- $2. t1_{min}$
- $= HPS + t4_{min}$ $= t3_{min} (HPS + t4_{min})$ 3. t2_{min}
- = HT 4. t3_{min}
- t4_{min} = HPW 5.
- 6. t5_{min} = HPS - 1
- = HPS (HDP + HDPS) + 1.5), if negative add $t3_{min}$ 7. t6_{min}
- $t14_{min}$ = HDPS (HPS + $t4_{min}$) + 1, if negative add $t3_{min}$

6.4.5 Single Color 8-Bit Panel Timing (Format 1)

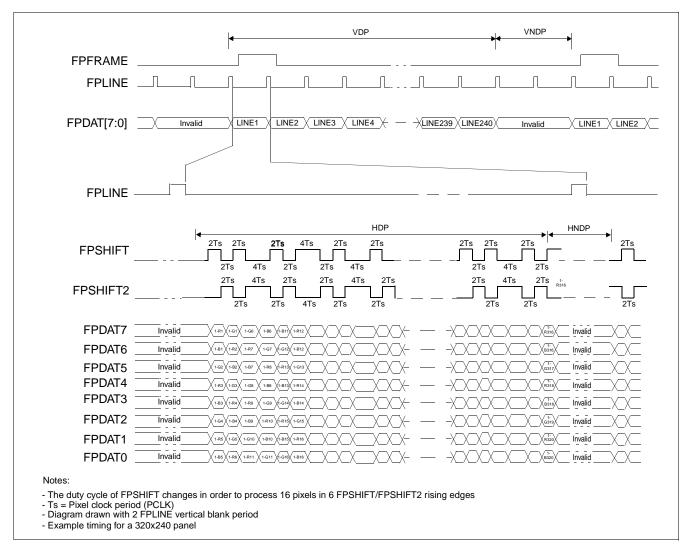


Figure 6-21: Single Color 8-Bit Panel Timing (Format 1)

VDP = Vertical Display Period
= (REG[34h] bits 9:0) + 1 Lines

VNDP = Vertical Non-Display Period
= VT - VDP
= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines

HDP = Horizontal Display Period
= ((REG[24h] bits 6:0) + 1) x 8Ts

HNDP = Horizontal Non-Display Period
= HT - HDP
= (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts)

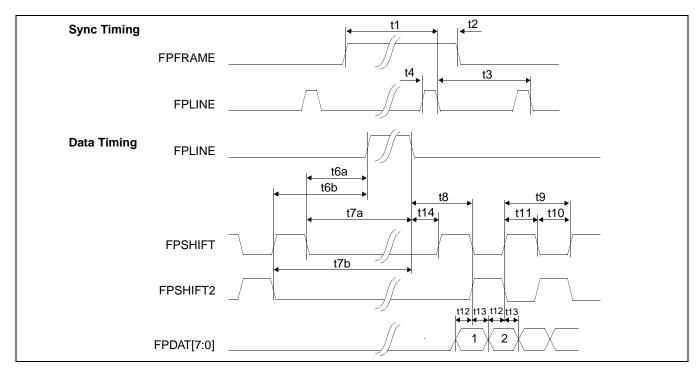


Figure 6-22: Single Color 8-Bit Panel A.C. Timing (Format 1)

Table 6-23: Single Color 8-Bit Panel A.C. Timing (Format 1)

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t6a	FPSHIFT falling edge to FPLINE rising edge	note 6			Ts
t6b	FPSHIFT2 falling edge to FPLINE rising edge	note 7			Ts
t7a	FPSHIFT falling edge to FPLINE falling edge	t6a + t4			Ts
t7b	FPSHIFT2 falling edge to FPLINE falling edge	t6b + t4			Ts
t8	FPLINE falling edge to FPSHIFT rising, FPSHIFT2 falling edge	t14 + 2			Ts
t9	FPSHIFT2, FPSHIFT period	4		6	Ts
t10	FPSHIFT2, FPSHIFT pulse width low	2			Ts
t11	FPSHIFT2, FPSHIFT pulse width high	2			Ts
t12	FPDAT[7:0] setup to FPSHIFT2, FPSHIFT falling edge	1			Ts
t13	FPDAT[7:0] hold from FPSHIFT2, FPSHIFT falling edge	1			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

- 1. Ts = pixel clock period
- 2. $t1_{min}$ = HPS + $t4_{min}$
- 3. $t2_{min} = t3_{min} (HPS + t4_{min})$
- 4. $t3_{min} = HT$
- 5. $t4_{min} = HPW$
- 6. t6a_{min} = HPS (HDP + HDPS), if negative add t3_{min}
- 7. $t6b_{min} = HPS (HDP + HDPS) + 2$, if negative add $t3_{min}$
- 8. $t14_{min}$ = HDPS (HPS + $t4_{min}$), if negative add $t3_{min}$

6.4.6 Single Color 8-Bit Panel Timing (Format 2)

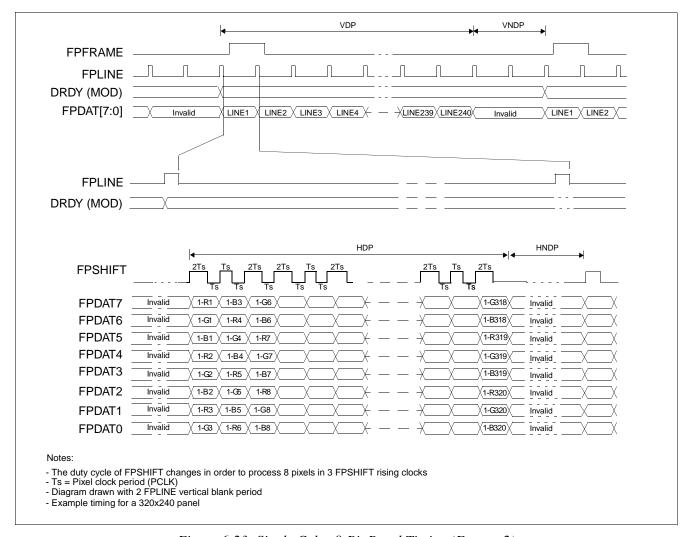


Figure 6-23: Single Color 8-Bit Panel Timing (Format 2)

VDP = Vertical Display Period = (REG[34h] bits 9:0) + 1 Lines

= Vertical Non-Display Period

= VT - VDP

VNDP

= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines

HDP = Horizontal Display Period

= ((REG[24h] bits 6:0) + 1) x 8Ts

HNDP = Horizontal Non-Display Period

= HT - HDP

 $= (((REG[20h] bits 6:0) + 1) \times 8Ts) - (((REG[24h] bits 6:0) + 1) \times 8Ts)$

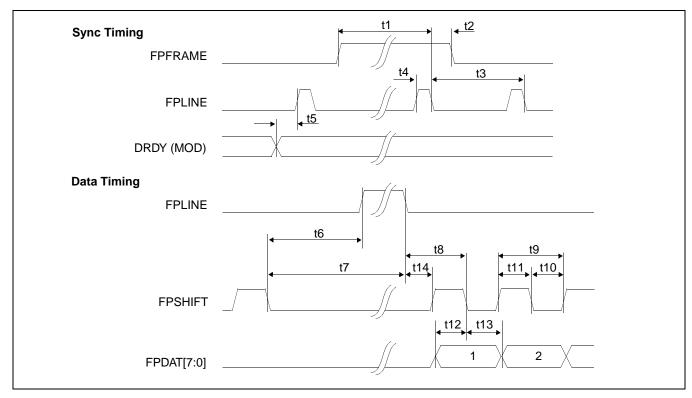


Figure 6-24: Single Color 8-Bit Panel A.C. Timing (Format 2)

Table 6-24: Single Color 8-Bit Panel A.C. Timing (Format 2)

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7			Ts
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 + 2			Ts
t9	FPSHIFT period	2			Ts
t10	FPSHIFT pulse width low	1			Ts
t11	FPSHIFT pulse width high	1			Ts
t12	FPDAT[7:0] setup to FPSHIFT falling edge	1			Ts
t13	FPDAT[7:0] hold to FPSHIFT falling edge	1			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

- 1. Ts = pixel clock period
- 2. t1_{min}
- $= HPS + t4_{min}$ $= t3_{min} (HPS + t4_{min})$ 3. t2_{min}
- = HT 4. t3_{min}
- t4_{min} = HPW 5.
- t5_{min} = HPS - 1 6.
- = HPS (HDP + HDPS) + 1, if negative add t3_{min} 7. t6_{min}
- $t14_{min}$ = HDPS (HPS + $t4_{min}$), if negative add $t3_{min}$

6.4.7 Single Color 16-Bit Panel Timing

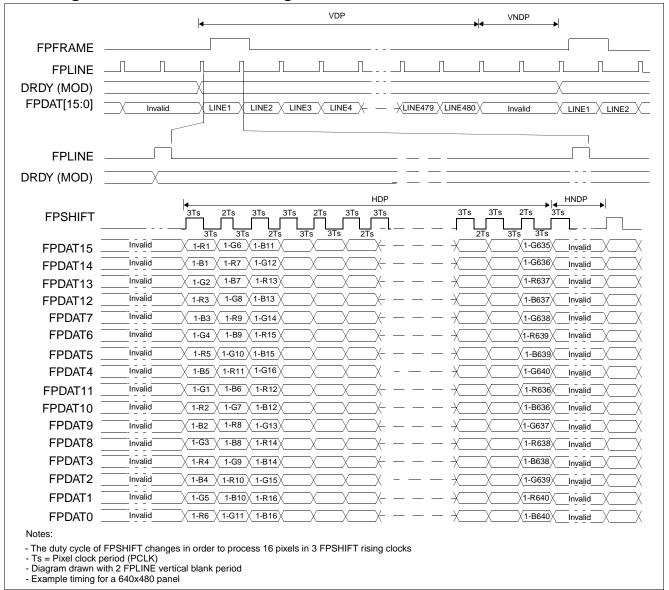


Figure 6-25: Single Color 16-Bit Panel Timing

VDP = Vertical Display Period
= (REG[34h] bits 9:0) + 1 Lines

VNDP = Vertical Non-Display Period
= VT - VDP
= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines

HDP = Horizontal Display Period
= ((REG[24h] bits 6:0) + 1) x 8Ts

HNDP = Horizontal Non-Display Period
= HT - HDP
= (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts)

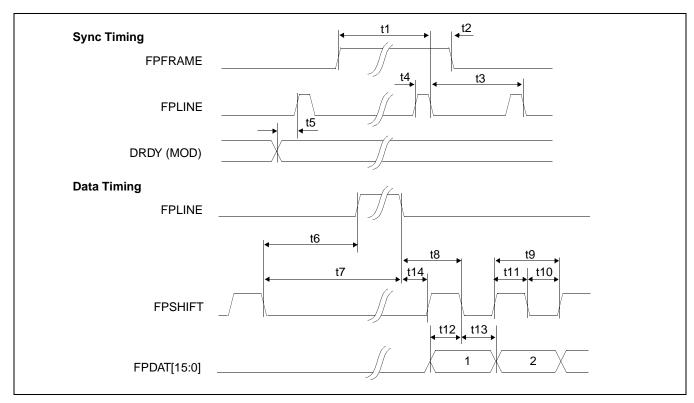


Figure 6-26: Single Color 16-Bit Panel A.C. Timing

Table 6-25: Single Color 16-Bit Panel A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7			Ts
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 + 3			Ts
t9	FPSHIFT period	5			Ts
t10	FPSHIFT pulse width low	2			Ts
t11	FPSHIFT pulse width high	2			Ts
t12	FPDAT[15:0] setup to FPSHIFT rising edge	2			Ts
t13	FPDAT[15:0] hold to FPSHIFT rising edge	2			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

- 1. Ts = pixel clock period
- 2. t1_{min}
- = HPS + $t4_{min}$ = $t3_{min}$ (HPS + $t4_{min}$) t2_{min} 3.
- $=H\ddot{T}$ 4. t3_{min}
- t4_{min} 5. = HPW
- = HPS 1 6. t5_{min}
- $t6_{min}$ = HPS (HDP + HDPS) + 2, if negative add $t3_{min}$ $t14_{min}$ = HDPS (HPS + $t4_{min}$), if negative add $t3_{min}$

6.4.8 Generic TFT Panel Timing

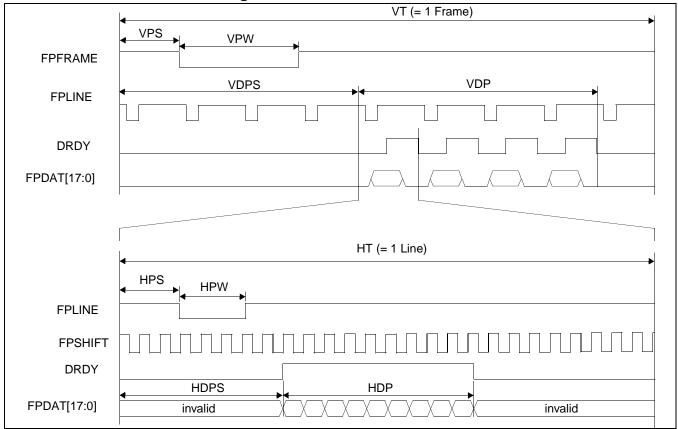


Figure 6-27: Generic TFT Panel Timing

```
VT
          = Vertical Total
                                                = [(REG[30h] bits 9-0) + 1] lines
VPS
          = FPFRAME Pulse Start Position
                                                = (REG[3Ch] bits 9-0) lines
VPW
          = FPFRAME Pulse Width
                                                = [(REG[3Ch] bits 18-16) + 1] lines
VDPS
          = Vertical Display Period Start Position= (REG[38h] bits 9-0) lines
VDP
          = Vertical Display Period
                                                = [(REG[34h] bits 9-0) + 1] lines
          = Horizontal Total
                                                = [((REG[20h] bits 6-0) + 1) \times 8] pixels
HT
          = FPLINE Pulse Start Position
                                                = [(REG[2Ch] bits 9-0) + 1] pixels
HPS
HPW
          = FPLINE Pulse Width
                                                = [(REG[2Ch] bits 22-16) + 1] pixels
HDPS
          = Horizontal Display Period Start Position= [(REG[28h] bits 9-0) + 5] pixels
HDP
          = Horizontal Display Period
                                                = [((REG[24h] bits 6-0) + 1) x 8] pixels
```

^{*}For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8.

^{*}Panel Type Bits (REG[0Ch] bits 1-0) = 01 (TFT)

^{*}FPLINE Pulse Polarity Bit (REG[2Ch] bit 23) = 0 (active low)

^{*}FPFRAME Polarity Bit (REG[3Ch] bit 23) = 0 (active low)

6.4.9 9/12/18-Bit TFT Panel Timing

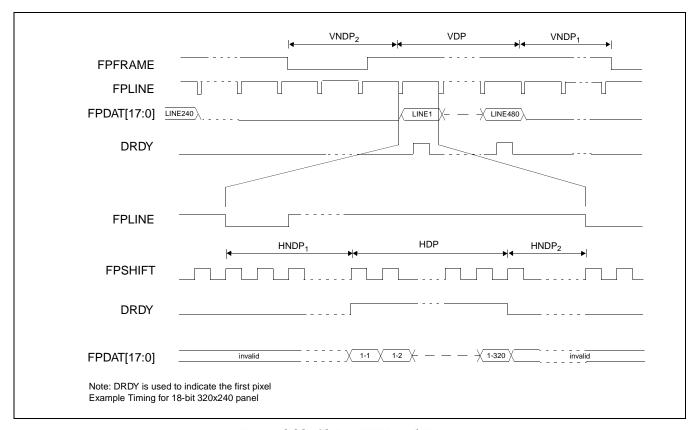


Figure 6-28: 18-Bit TFT Panel Timing

VDP	= Vertical Display Period = VDP Lines	
VNDP	= Vertical Non-Display Period	
	= VNDP1 + VNDP2	
	= VT - VDP Lines	
VNDP1	= Vertical Non-Display Period 1	
	= VNDP - VNDP2 Lines	
VNDP2	= Vertical Non-Display Period 2	
	= VDPS - VPS Lines	if negative add VT
HDP	= Horizontal Display Period	•
	= HDP Ts	
HNDP	= Horizontal Non-Display Period	
	= HNDP1 + HNDP2	
	= HT - HDP Ts	
HNDP1	= Horizontal Non-Display Period 1	
	= HDPS - HPS Ts	if negative add HT
HNDP2	= Horizontal Non-Display Period 2	-
	= HPS - (HDP + HDPS) Ts	if negative add HT

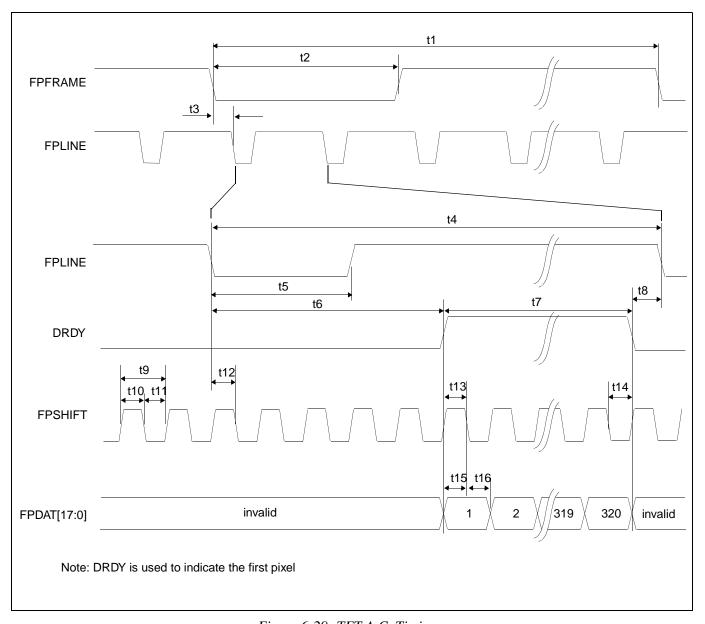


Figure 6-29: TFT A.C. Timing

Table 6-26: TFT A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME cycle time	VT			Lines
t2	FPFRAME pulse width low	VPW			Lines
t3	FPFRAME falling edge to FPLINE falling edge phase difference	HPS			Ts (note 1)
t4	FPLINE cycle time	HT			Ts
t5	FPLINE pulse width low	HPW			Ts
t6	FPLINE Falling edge to DRDY active	note 2		250	Ts
t7	DRDY pulse width	HDP			Ts
t8	DRDY falling edge to FPLINE falling edge	note 3			Ts
t9	FPSHIFT period	1			Ts
t10	FPSHIFT pulse width high	0.5			Ts
t11	FPSHIFT pulse width low	0.5			Ts
t12	FPLINE setup to FPSHIFT falling edge	0.5			Ts
t13	DRDY to FPSHIFT falling edge setup time	0.5			Ts
t14	DRDY hold from FPSHIFT falling edge	0.5			Ts
t15	Data setup to FPSHIFT falling edge	0.5			Ts
t16	Data hold from FPSHIFT falling edge	0.5			Ts

1. Ts = pixel clock period

2. t6min = HDPS - HPS if negative add HT 3. t8min = HPS - (HDP + HDPS) if negative add HT

6.4.10 Sharp HR-TFT Panel Timing

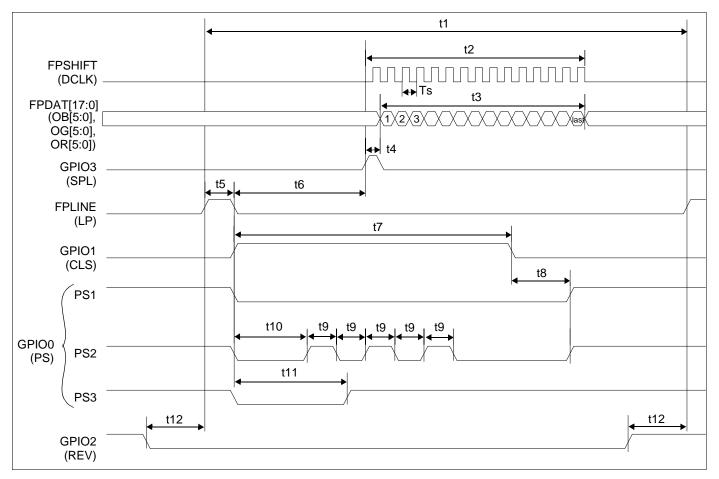


Figure 6-30: Sharp HR-TFT Panel Horizontal Timing

Table 6-27: Sharp HR-TFT Panel Horizontal Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Horizontal total period	8	note 2	1024	Ts (note 1)
t2	FPSHIFT (DCLK) active	9	note 3	1025	Ts
t3	Horizontal display period	8	note 4	1024	Ts
t4	GPIO3 (SPL) pulse width		1		Ts
t5	FPLINE (LP) pulse width	1	note 5	256	Ts
t6	FPLINE (LP) falling edge to GPIO3 (SPL) rising edge	2	note 6	-	Ts
t7	GPIO1 (CLS) pulse width	0	note 7	511	Ts
t8	GPIO1 (CLS) falling edge to GPIO0 (PS1) rising edge	0	note 8	63	Ts
t9	GPIO0 (PS2) toggle width	0	note 9	127	Ts
t10	GPIO0 (PS2) first falling edge to GPIO0 (PS2) first rising edge	0	note 10	255	Ts
t11	GPIO0 (PS3) pulse width	0	note 11	127	Ts
t12	GPIO2 (REV) toggle position to FPLINE (LP) rising edge	0	note 12	31	Ts

1. Ts = pixel clock period

2. t1typ = [(REG[20h] bits 6-0) + 1] * 8

3. t2typ = [((REG[24h] bits 6-0) + 1) * 8] + 1

4. t3typ = [(REG[24h] bits 6-0) + 1] * 8

5. t5typ = (REG[2Ch] bits 22-16) + 1

```
6. t6typ = (REG[28h] bits 9-0) - (REG[2Ch] bits 22-16) + 2
7. t7typ = (REG[A0h] bits 8-0)
8. t8typ = (REG[A4h] bits 5-0)
9. t9typ = (REG[ACh] bits 6-0)
10. t10typ = (REG[A8h] bits 7-0)
11. t11typ = (REG[B0h] bits 6-0)
12. t12typ = (REG[B4h] bits 4-0)
```

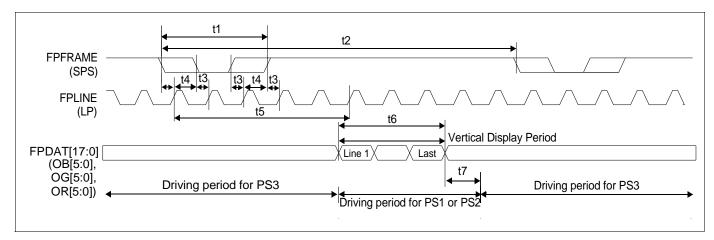


Figure 6-31: Sharp HR-TFT Panel Vertical Timing

Symbol	Parameter	Min	Тур	Max	Units
14	FPFRAME (SPS) pulse width	1	note 3	8	Lines
t1	TTTTAME (Of 6) pulse width	'	11016 3	O	(note 1)
t2	Vertical total period	1	note 4	1024	Lines
10	FPFRAME (SPS) rising/falling edge to FPLINE (LP) rising edge		1		Ts (note 2)
t3	The transition of the state of		(note 5)		13 (11016 2)
t4	FPLINE (LP) rising edge to FPFRAME (SPS) rising/falling edge	0	note 5	1023	Ts
t5	Vertical display start position	0	note 6	1023	Lines
t6	Vertical display period	1	note 7	1024	Lines
t7	Extra driving period for GPIO0 (PS1/2)	0	note 8	7	Lines

Table 6-28: Sharp HR-TFT Panel Vertical Timing

1. Lines	= 1 Horizontal Line
2 Te	- nivel clock period

2. 1s = pixer clock period 3. t1typ = (REG[3Ch] bits 18-16) + 1 4. t2typ = (REG[30h] bits 9-0) + 1

5. t3typ The FPFRAME (SPS) rising/falling edge can occur before or after FPLINE (LP) rising edge depending on the value stored in the FPLINE Pulse Start Position bits (REG[2Ch] bits 9-0). To obtain the case indicated by t3, set the FPLINE Pulse Start Position bits to 0 and the FPFRAME (SPS) rising/falling edge will occur 1 Ts before the FPLINE (LP) rising edge. To obtain the case indicated by t4, set the FPLINE Pulse Start Position bits to a value between 1 and the Horizontal Total - 1. Then t4 = (Horizontal Total Period - 1) - (REG[2Ch] bits 9-0)

6. t5typ = (REG[38h] bits 9-0) 7. t6typ = (REG[34h] bits 9-0) + 1 8. t7typ = (REG[B8h] bits 2-0)

6.4.11 Casio TFT Panel Timing

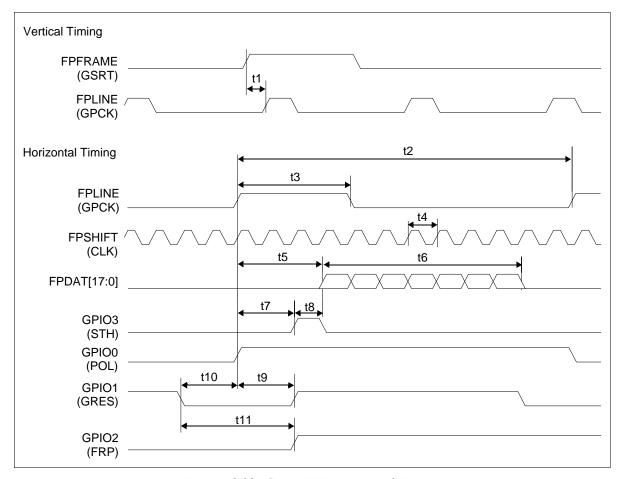


Figure 6-32: Casio TFT Horizontal Timing

Table 6-29: Casio TFT Horizontal Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Horizontal pulse start position	1	note 2	1024	Ts (note 1)
t2	Horizontal total	8	note 3	1024	Ts
t3	Horizontal pulse width	1	note 4	128	Ts
t4	Pixel clock period		note 5		Ts
t5	Horizontal display period start position	4	note 6	1027	Ts
t6	Horizontal display period	8	note 7	1024	Ts
t7	FPLINE (GPCK) rising edge to GPIO3 (STH) rising edge	0	note 8	63	Ts
t8	GPIO3 (STH) pulse width		1		Ts
t9	FPLINE (GPCK) rising edge to GPIO1 (GRES) falling edge	0	note 9	63	Ts
t10	GPIO1 (GRES) falling edge to FPLINE (GPCK) rising edge	1	note 10	64	Ts
t11	FPLINE (GPCK) rising edge to GPIO2 (FRP) toggle point	0	note 11	127	Ts

- 1. Ts = pixel clock period
- 2. t1typ = [(REG[2Ch] bits 9-0) + 1)
- 3. t2typ = [(REG[20h] bits 6-0) + 1) * 8
- 4. t3typ = [(REG[2Ch] bits 22-16) + 1]
- 5. t4typ = depends on the pixel clock (PCLK)

```
6. t5typ = (REG[28h] bits 9-0) + 4
7. t6typ = [(REG[24h] bits 6-0) + 1] * 8
8. t7typ = (REG[C0h] bits 29-24)
9. t9typ = (REG[C0h] bits 5-0)
10. t10typ = (REG[C0h] bits 13-8) + 1
11. t11typ = (REG[C0h] bits 22-16)
```

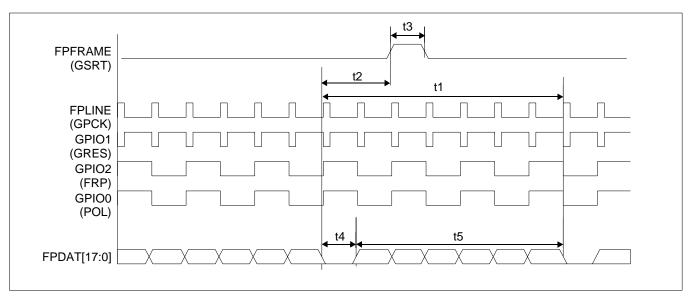


Figure 6-33: Casio TFT Vertical Timing

Table 6-30: Casio TFT Vertical Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Vertical total	1	note 2	1024	lines (note 1)
t2	Vertical pulse start	0	note 3	1023	lines
t3	Vertical pulse width	1	note 4	8	lines
t4	Vertical display period start position	1	note 5	1024	lines
t5	Vertical display period	1	note 6	1024	lines

= 1 Horizontal Line 1. Lines 2. t1typ = (REG[30h] bits 9-0) + 1= (REG[3Ch] bits 9-0)t2typ 4. t3typ = (REG[3Ch] bits 18-16) + 1t4typ = (REG[38h] bits 9-0) + 16. t5typ = (REG[34h] bits 9-0) + 1

6.4.12 TFT Type 2 Panel Timing

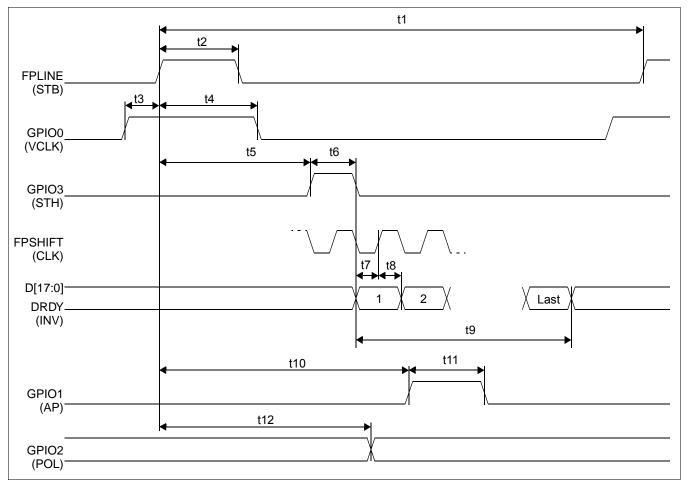


Figure 6-34: TFT Type 2 Horizontal Timing

Table 6-31: TFT Type 2 Horizontal Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Horizontal total period	1	note 2	1024	Ts (note 1)
t2	FPLINE (STB) pulse width		5		Ts
t3	GPIO0 (VCLK) rising edge to FPLINE (STB) rising edge	7	note 3	16	Ts
t4	FPLINE (STB) rising edge to GPIO0 (VCLK) falling edge	7	note 4	16	Ts
t5	FPLINE (STB) rising edge to GPIO3 (STH) rising edge		note 5		Ts
t6	GPIO3 (STH) pulse width		1		Ts
t7	Data setup time	0.5			Ts
t8	Data hold time	0.5			Ts
t9	Horizontal display period	8	note 6	1024	Ts
t10	FPLINE (STB) rising edge to GPIO1 (AP) rising edge	40	note 7	90	Ts
t11	GPIO1 (AP) pulse width	20	note 8	270	Ts
t12	FPLINE (STB) rising edge to GPIO2 (POL) toggle position		10		Ts

- 1. Ts = pixel clock period 2. t1typ = [(REG[20h] bits 6-0) + 1] * 8
- = (REG[BCh] bits 1-0) t3typ
- - Selected from 7, 9, 12 or 16 Ts
- t4typ = (REG[BCh] bits 4-3)
 - Selected from 7, 9, 12 or 16 Ts
- = (REG[28h] bits 9-0) + 3 Tst5typ
- = [(REG[24h] bits 6-0) + 1] * 86. t9typ
- t10typ = (REG[BCh] bits 9-8)
 - Selected from 40, 52, 68 or 90 Ts
- 8. t11typ = (REG[BCh] bits 13-11)
 - Selected from 20, 40, 80, 120, 150, 190, 240 or 270 Ts

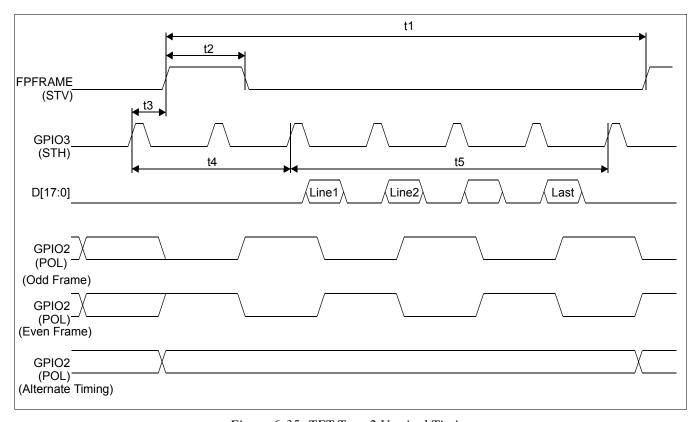


Figure 6-35: TFT Type 2 Vertical Timing

Table 6-32: TFT Type 2 Vertical Timing

Symbol	Parameter		Тур	Max	Units
t1	Vertical total period	8		1024	Lines
t2	FPFRAME (STV) pulse width		1		Lines
t3	GPIO3 (STH) rising edge to FPFRAME (STV) rising edge		0		Ts (note 1)
t4	Vertical display start position	0	note 3	1024	Lines (note 2)
t5	Vertical display period	1	note 4	1024	Ts

- 1. Ts = pixel clock period
- 2. Lines = 1 Horizontal Line
- = (REG[38h] bits 9-0)t4typ
- = (REG[34h] bits 9-0)t5typ

6.4.13 TFT Type 3 Panel Timing

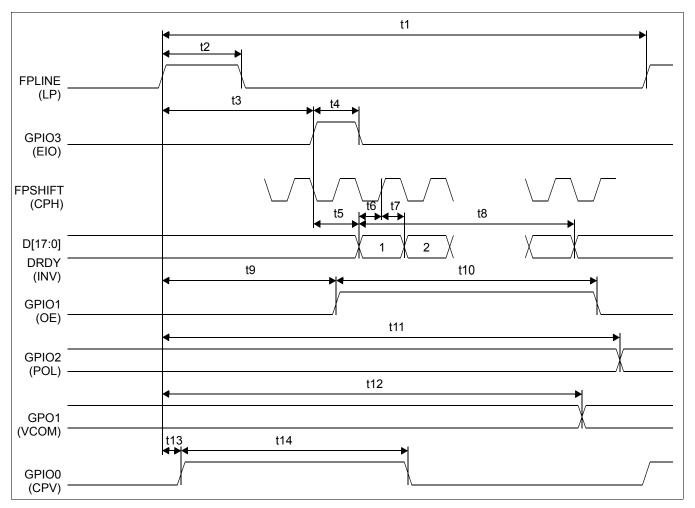


Figure 6-36: TFT Type 3 Horizontal Timing

Table 6-33: TFT Type 3 Horizontal Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Horizontal total period	8		1024	Ts (note 1)
t2	FPLINE (LP) pulse width	1		256	Ts
t3	FPLINE (LP) rising edge to GPIO3 (EIO) rising edge				Ts
t4	GPIO3 (EIO) pulse width		1		Ts
t5	GPIO3 (EIO) rising edge to 1st data		1		Ts
t6	Data setup time	0.5			Ts
t7	Data hold time	0.5			Ts
t8	Horizontal display period	8		1024	Ts
t9	FPLINE (LP) rising edge to GPIO1 (OE) rising edge	0		512	Ts
t10	GPIO1 (OE) pulse width	0		512	Ts
t11	FPLINE (LP) rising edge to GPIO2 (POL) toggle position	0		512	Ts
t12	FPLINE (LP) rising edge to GPO1 (VCOM) toggle position	0		512	Ts
t13	FPLINE (LP) rising edge to GPIO0 (CPV) rising edge		0		Ts
t14	GPIO0 (CPV) pulse width	0		512	Ts

- 1. Ts = pixel clock period
- 2. t1typ = [(REG[20h] bits 6-0) + 1] * 8
- 3. t2typ = (REG[2Ch] bits 22-16) + 1
- 3. t3typ = (REG[28h] bits 9-0) + 4 Ts
- 4. t4typ = Selected from 0, 1, 2 Ts
- 6. t8typ = [(REG[24h] bits 6-0) + 1] * 8
- 7. t9typ = (REG[D8h] bits 15-8) * 2
- 8. t10typ = (REG[D8h] bits 23-16) * 2
- 9. t11typ = (REG[D8h] bits 31-24) * 2
- 10. t12typ = (REG[DCh] bits 7-0) * 2
- 7. t14typ = (REG[DCh] bits 15-8) * 2

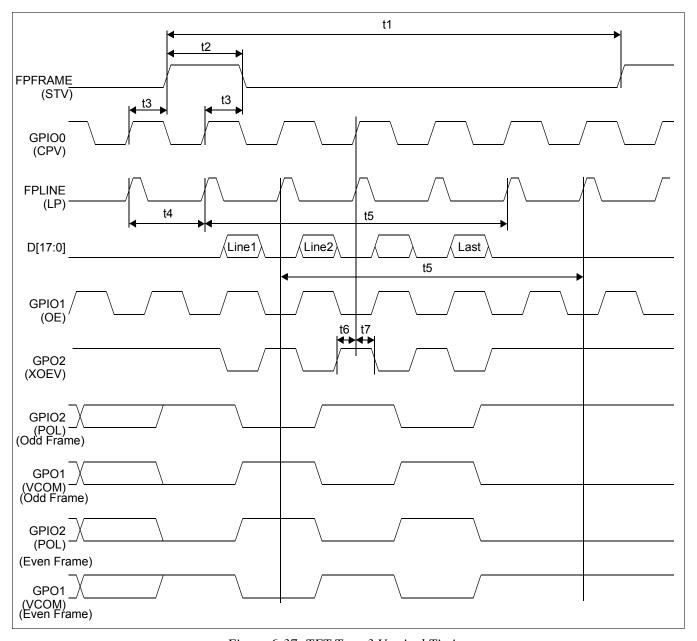


Figure 6-37: TFT Type 3 Vertical Timing

Table 6-34: TFT Type 3 Vertical Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Vertical total period	1		1024	Lines
t2	FPFRAME (STV) pulse width		1		Lines
t3	GPIO0 (CPV) rising edge to FPFRAME (STV) rising (falling) edge		0.5		Lines
t4	Vertical display start position	1			Lines
t5	Vertical display period	1		1024	Lines
t6	GPO2 (XOEV) rising edge to GPIO0 (CPV) rising edge	0		512	Ts
t7	GPIO0 (CPV) rising edge to GPO2 (XOEV) falling edge	0		512	Ts

- 1. Ts = pixel clock period
- 2. t4typ = (REG[38h] bits 9-0)
- 2. t5typ = (REG[34h] bits 9-0) + 1
- 3. t6typ = (REG[DCh] bits 23-16) * 2
- 4. t7typ = (REG[DCh] bits 31-24) * 2

6.4.14 TFT Type 4 Panel Timing

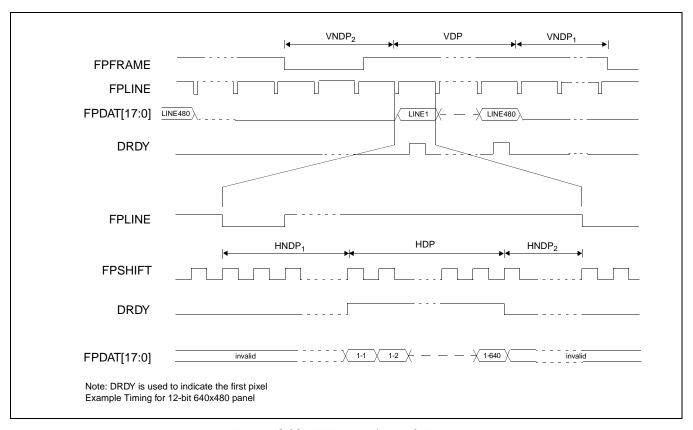


Figure 6-38: TFT Type 4 Panel Timing

VDP = Vertical Display Period

= VDP Lines

VNDP = Vertical Non-Display Period

= VNDP1 + VNDP2 = VT - VDP Lines

VNDP1 = Vertical Non-Display Period 1

= VNDP - VNDP2 Lines

VNDP2 = Vertical Non-Display Period 2

= VDPS - VPS Lines

= Horizontal Display Period

= HDP Ts

HDP

HNDP = Horizontal Non-Display Period

= HNDP1 + HNDP2 = HT - HDP Ts

HNDP1 = Horizontal Non-Display Period 1

= HDPS - (HPS + 1) + 5 Ts if negative add HT

HNDP2 = Horizontal Non-Display Period 2

= (HPS + 1) - (HDP + HDPS + 5) Ts if negative add HT

if negative add VT

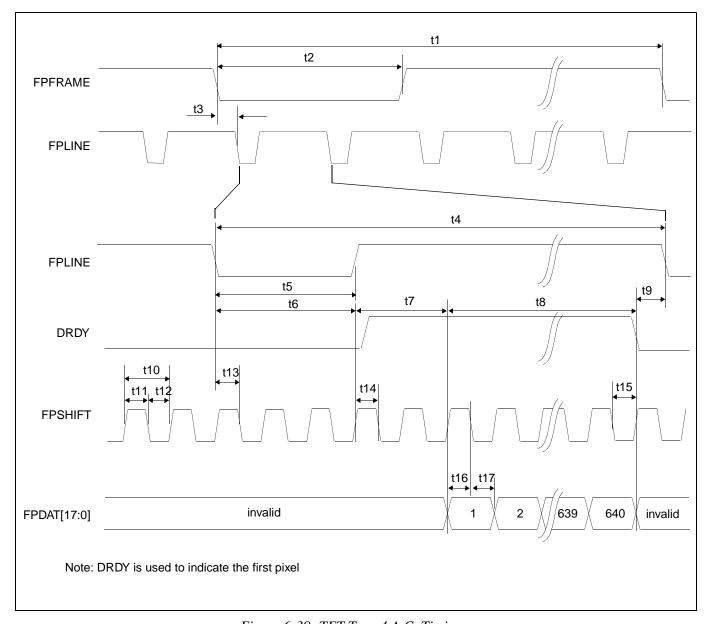


Figure 6-39: TFT Type 4 A.C. Timing

Table 6-35: TFT Type 4 A.C. Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	FPFRAME cycle time	VT			Lines
t2	FPFRAME pulse width low	VPW			Lines
t3	FPFRAME falling edge to FPLINE falling edge phase difference	HPS + 1			Ts (note 1)
t4	FPLINE cycle time	HT			Ts
t5	FPLINE pulse width low	HPW			Ts
t6	FPLINE Falling edge to DRDY active	note 2		250	Ts
t7	DRDY active to data setup		8		Ts
t8	DRDY pulse width	HDP			Ts
t9	DRDY falling edge to FPLINE falling edge	note 3			Ts
t10	FPSHIFT period	1			Ts
t11	FPSHIFT pulse width high	0.5			Ts
t12	FPSHIFT pulse width low	0.5			Ts
t13	FPLINE setup to FPSHIFT falling edge	0.5			Ts
t14	DRDY to FPSHIFT falling edge setup time	0.5			Ts
t15	DRDY hold from FPSHIFT falling edge	0.5			Ts
t16	Data setup to FPSHIFT falling edge	0.5			Ts
t17	Data hold from FPSHIFT falling edge	0.5			Ts

1. Ts = pixel clock period

2. t6min = HDPS - (HPS + 1) + 5 if negative add HT 3. t8min = (HPS + 1) - (HDP + HDPS + 5) if negative add HT

6.5 USB Timing

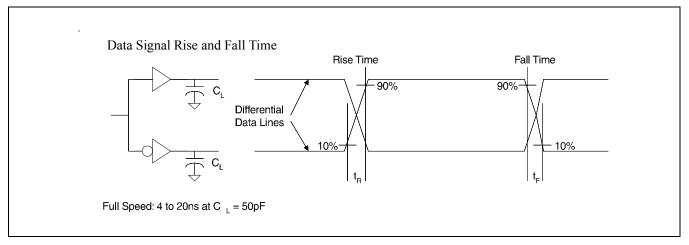


Figure 6-40 Data Signal Rise and Fall Time

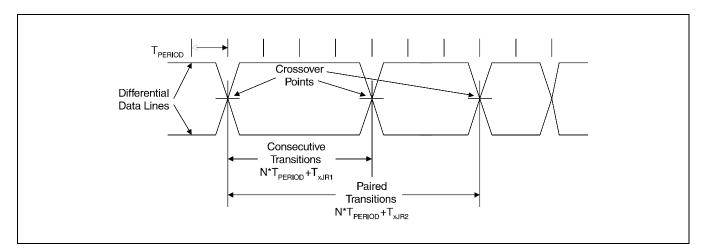


Figure 6-41 Differential Data Jitter

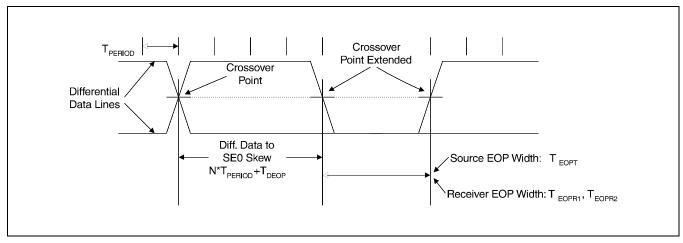


Figure 6-42 Differential to EOP Transition Skew and EOP Width

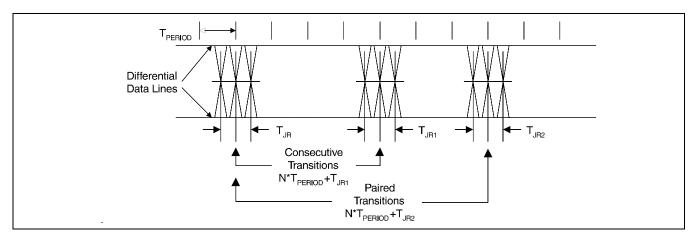


Figure 6-43 Receiver Jitter Tolerance

Symbol	Parameter	Conditions	Waveform	Min	Тур	Max	Unit
USB _{FREQ}	USB Clock Frequency				48		MHz
T _{PERIOD}	USB Clock Period		Figure 6-40		$\frac{1}{\text{USB}_{\text{FREQ}}}$		
T _R	Rise & Fall Times	C _L = 50 pF	Figure 6-40	4		20	ns
T _F	Trise a rail rilles	Notes 1,2	rigule 0-40	4		20	
T_{RFM}	Rise/Fall time matching	(T_R/T_F)	Figure 6-40	90		110	%
V _{CRS}	Output Signal Crossover Voltage			1.3		2.0	V
Z _{DRV}	Driver Output Resistance	Steady State Drive		28 ^{Note 5}		44	Ω
T _{DRATE}	Data Rate			11.97	12	12.03	Mbs
T _{DDJ1}	Source Differential Driver Jitter to Next Transition	Notes 3,4.	Figure 6-41	-3.5	0	3.5	ns
T _{DDJ2}	Source Differential Driver Jitter for Paired Transitions	Notes 3,4	Figure 6-41	-4.0	0	4.0	ns
T _{DEOP}	Differential to EOP Transition Skew	Note 4	Figure 6-42	-2	0	5	ns
T _{EOPT}	Source EOP Width	Note 4	Figure 6-42	160	167	175	ns
T _{JR1}	Receiver Data Jitter Tolerance to Next Transition	Note 4	Figure 6-43	-18.5	0	18.5	ns
T _{JR2}	Receiver Data Jitter Tolerance for Paired Transitions	Note 4	Figure 6-43	-9	0	9	ns
T _{EOPR1}	EOP Width at Receiver; Must reject as EOP	Note 4	Figure 6-42	40			ns
T _{EOPR2}	EOP Width at Receiver; Must accept as EOP	Note 4	Figure 6-42	80			ns

- 1 Measured from 10% to 90% of the data signal.
- 2 The rising and falling edges should be smoothly transitioning (monotonic).
- 3 Timing difference between the differential data signals.
- 4 Measured at crossover point of differential data signals.
- 5 20 Ω is placed in series to meet this USB specification. The actual driver output impedance is 15 Ω .

7 Clocks

7.1 Clock Descriptions

7.1.1 BCLK

BCLK is an internal clock derived from CLKI or CLKI2 (see REG[04h] bit 0). If CLKI is selected as the source, BCLK can be a divided version (÷1, ÷2) of CLKI. CLKI is typically derived from the host CPU bus clock.

The source clock options for BCLK may be selected as in the following table.

Table 7-1: BCLK Clock Selection

Source Clock Options	BCLK Selection
CLKI	CNF6 = 0
CLKI ÷ 2	CNF6 = 1

Note

For synchronous bus interfaces, it is recommended that BCLK be set the same as the CPU bus clock (not a divided version of CLKI) e.g. SH-3, SH-4.

7.1.2 MCLK

MCLK provides the internal clock required to access the embedded SRAM. The S1D13A05 is designed with efficient power saving control for clocks (clocks are turned off when not used); reducing the frequency of MCLK does not necessarily save more power. Furthermore, reducing the MCLK frequency relative to the BCLK frequency increases the CPU cycle latency and so reduces screen update performance. For a balance of power saving and performance, the MCLK should be configured to have a high enough frequency setting to provide sufficient screen refresh as well as acceptable CPU cycle latency.

Note

The maximum frequency of MCLK is 50MHz (30MHz if running CORE V_{DD} at 2.0V \pm 10%). As MCLK is derived from BCLK, when BCLK is greater than 50MHz, MCLK must be divided using REG[04h] bits 5-4.

The source clock options for MCLK may be selected as in the following table.

Table 7-2: MCLK Clock Selection

Source Clock Options	MCLK Selection
BCLK	REG[04h] bits 5-4 = 00
BCLK ÷ 2	REG[04h] bits 5-4 = 01
BCLK ÷ 3	REG[04h] bits 5-4 = 10
BCLK ÷ 4	REG[04h] bits 5-4 = 11

7.1.3 PCLK

PCLK is the internal clock used to control the panel. It should be chosen to match the optimum frame rate of the panel. See Section 10, "Frame Rate Calculation" on page 167 for details on the relationship between PCLK and frame rate.

Some flexibility is possible in the selection of PCLK. Firstly, panels typically have a range of permissible frame rates. Secondly, it may be possible to choose a higher PCLK frequency and tailor the horizontal non-display period to bring down the frame-rate to its optimal value.

The source clock options for PCLK may be selected as in the following table.

Table 7-3: PCLK Clock Selection

Source Clock Options	PCLK Selection
MCLK	REG[08h] bits 7-0 = 00h
MCLK ÷2	REG[08h] bits 7-0 = 10h
MCLK ÷3	REG[08h] bits 7-0 = 20h
MCLK ÷4	REG[08h] bits 7-0 = 30h
MCLK ÷8	REG[08h] bits 7-0 = 40h
BCLK	REG[08h] bits 7-0 = 01h
BCLK ÷2	REG[08h] bits 7-0 = 11h
BCLK ÷3	REG[08h] bits 7-0 = 21h
BCLK ÷4	REG[08h] bits 7-0 = 31h
BCLK ÷8	REG[08h] bits 7-0 = 41h
CLKI	REG[08h] bits 7-0 = 02h
CLKI ÷2	REG[08h] bits 7-0 = 12h
CLKI ÷3	REG[08h] bits 7-0 = 22h
CLKI ÷4	REG[08h] bits 7-0 = 32h
CLKI ÷8	REG[08h] bits 7-0 = 42h
CLKI2	REG[08h] bits 7-0 = 03h
CLKI2 ÷2	REG[08h] bits 7-0 = 13h
CLKI2 ÷3	REG[08h] bits 7-0 = 23h
CLKI2 ÷4	RREG[08h] bits 7-0 = 33h
CLKI2 ÷8	REG[08h] bits 7-0 = 43h

There is a relationship between the frequency of MCLK and PCLK that must be maintained.

Table 7-4: Relationship between MCLK and PCLK

SwivelView Orientation	Color Depth (bpp)	MCLK to PCLK Relationship
	16	$f_{MCLK} \ge f_{PCLK}$
	8	$f_{MCLK} \ge f_{PCLK} \div 2$
SwivelView 0° and 180°	4	$f_{MCLK} \ge f_{PCLK} \div 4$
	2	$f_{MCLK} \ge f_{PCLK} \div 8$
	1	f _{MCLK} ≥ f _{PCLK} ÷16
SwivelView 90° and 270°	16/8/4/2/1	f _{MCLK} ≥ 1.25f _{PCLK}

7.1.4 PWMCLK

PWMCLK is the internal clock used by the Pulse Width Modulator for output to the panel.

The source clock options for PWMCLK may be selected as in the following table.

Table 7-5: PWMCLK Clock Selection

Source Clock Options	PWMCLK Selection
CLKI	REG[70h] bits 2-1 = 00
CLKI2	REG[70h] bits 2-1 = 01
MCLK	REG[70h] bits 2-1 = 10
PCLK	REG[70h] bits 2-1 = 11

For further information on controlling PWMCLK, see "PWM Clock Configuration Register" on page 127..

7.2 Clock Selection

The following diagram provides a logical representation of the S1D13A05 internal clocks used for the LCD controller.

Figure 7-1: Clock Selection

Note

¹ CNF6 must be set at RESET#.

7.3 Clocks versus Functions

Table 7-6: "S1D13A05 Internal Clock Requirements", lists the internal clocks required for the following S1D13A05 functions.

Table 7-6: S1D13A05 Internal Clock Requirements

Function	Bus Clock (BCLK)	Memory Clock (MCLK)	Pixel Clock (PCLK)	PWM Clock (PWMCLK)	USB Clock (USBCLK)
Register Read/Write	Required	Not Required	Not Required	Not Required ¹	Not Required
Memory Read/Write	Required	Required	Not Required	Not Required ¹	Not Required
Look-Up Table Register Read/Write	Required	Required	Not Required	Not Required ¹	Not Required
Software Power Save	Required	Not Required	Not Required	Not Required ¹	Not Required
LCD Output	Required	Required	Required	Not Required ¹	Not Required
USB Register Read/Write	Required	Not Required	Not Required	Not Required	Required

Note

¹PWMCLK is an optional clock (see Section 7.1.4, "PWMCLK" on page 96).

8 Registers

This section discusses how and where to access the S1D13A05 registers. It also provides detailed information about the layout and usage of each register.

8.1 Register Mapping

The S1D13A05 registers are memory-mapped. When the system decodes the input pins as CS#=0 and M/R#=0, the registers may be accessed. The register space is decoded by AB[17:0] and is mapped as follows.

M/R# **Address** Size **Function** 00000h to 40000h 256K bytes SRAM memory 0000h to 00E3h 0 227 bytes Configuration registers 0 4000h to 4054h 84 bytes **USB** registers 0 8000h to 8019h 25 bytes 2D Acceleration Registers 0 10000h to 1FFFEh 65536 bytes (64K bytes) 2D Accelerator Data Port

Table 8-1: S1D13A05 Register Mapping

8.2 Register Set

The S1D13A05 register set is as follows.

Table 8-2: S1D13A05 Register Set

Register	Pg	Register	Pg						
LCD Register Descriptions (Offset = 0h)									
Read-Only Configuration Registers									
REG[00h] Product Information Register	101								
Clock Configuration Registers									
REG[04h] Memory Clock Configuration Register	102	REG[08h] Pixel Clock Configuration Register	103						
Panel	Configu	ration Registers							
REG[0Ch] Panel Type & MOD Rate Register	103	REG[10h] Display Settings Register	105						
REG[14h] Power Save Configuration Register	107								
Look-Up Table Registers									
REG[18h] Look-Up Table Write Register	108	REG[1Ch] Look-Up Table Read Register	109						
Dis	play Mo	de Registers							
REG[20h] Horizontal Total Register	110	REG[24h] Horizontal Display Period Register	110						
REG[28h] Horizontal Display Period Start Position Register	111	REG[2Ch] FPLINE Register	111						
REG[30h] Vertical Total Register	112	REG[34h] Vertical Display Period Register	113						
REG[38h] Vertical Display Period Start Position Register	113	REG[3Ch] FPFRAME Register	114						
REG[40h] Main Window Display Start Address Register	115	REG[44h] Main Window Line Address Offset Register	115						
REG[48h] Extended Panel Type Register	115								

Table 8-2: S1D13A05 Register Set

Register	Pg	Register	Pg							
Picture-in-Picture Plus (PIP+) Registers										
REG[50h] PIP+ Window Display Start Address Register	117	REG[54h] PIP+ Window Line Address Offset Register	117							
REG[58h] PIP ⁺ Window X Positions Register	118	REG[5Ch] PIP ⁺ Window Y Positions Register	120							
Miscellaneous Registers										
REG[60h] Reserved	122	REG[64h] GPIO Status and Control Register	122							
REG[68h] GPO Status and Control Register	125	REG[70h] PWM Clock Configuration Register	127							
REG[74h] PWMOUT Duty Cycle Register	129	9 REG[80h] Scratch Pad A Register								
REG[84h] Scratch Pad B Register	130	REG[88h] Scratch Pad C Register	130							
Exter	nded Pa	nel Registers								
REG[A0h] HR-TFT CLS Width Register	131	REG[A4h] HR-TFT PS1 Rising Edge Register	131							
REG[A8h] HR-TFT PS2 Rising Edge Register	131	REG[ACh] HR-TFT PS2 Toggle Width Register	132							
REG[B0h] HR-TFT PS3 Signal Width Register	132	REG[B4h] HR-TFT REV Toggle Point Register	132							
REG[B8h] HR-TFT PS1/2 End Register	133	REG[BCh] Type 2 TFT Configuration Register	133							
REG[C0h] Casio TFT Timing Register	136	REG[D8h] Type 3 TFT Configuration 0 Register	135							
REG[DCh] Type 3 TFT Configuration 1 Register	136	REG[E0h] Type 3 TFT PCLK Divide Register	137							
REG[E4h] Type 3 TFT Partial Mode Display Control Register	138	REG[E8h] Type 3 TFT Partial Area 0 Positions Register	139							
REG[ECh] Type 3 TFT Partial Area 1 Positions Register	139	REG[F0h] Type 3 TFT Partial Area 2 Positions Register	140							
REG[F4h] Type 3 TFT Command Store Register	140	REG[F8h] Type 3 TFT Miscellaneous Register	141							
USB Register	Descrip	otions (Offset = 4000h)								
REG[4000h] Control Register	142	REG[4002h] Interrupt Enable Register 0	143							
REG[4004h] Interrupt Status Register 0	144	REG[4006h] Interrupt Enable Register 1	145							
REG[4008h] Interrupt Status Register 1	145	REG[4010h] Endpoint 1 Index Register	146							
REG[4012h] Endpoint 1 Receive Mailbox Data Register	146	REG[4018h] Endpoint 2 Index Register	146							
REG[401Ah] Endpoint 2 Transmit Mailbox Data Register	147	REG[401Ch] Endpoint 2 Interrupt Polling Interval Register	147							
REG[4020h] Endpoint 3 Receive FIFO Data Register	147	REG[4022h] Endpoint 3 Receive FIFO Count Register	147							
REG[4024h] Endpoint 3 Receive FIFO Status Register	148	REG[4026h] Endpoint 3 Maximum Packet Size Register	148							
REG[4028h] Endpoint 4 Transmit FIFO Data Register	148	REG[402Ah] Endpoint 4 Transmit FIFO Count Register	149							
REG[402Ch] Endpoint 4 Transmit FIFO Status Register	149	REG[402Eh] Endpoint 4 Maximum Packet Size Register	149							
REG[4030h] Endpoint 4 Maximum Packet Size Register	149	REG[4032h] USB Status Register	150							
REG[4034h] Frame Counter MSB Register	151	REG[4036h] Frame Counter LSB Register	151							
REG[4038h] Extended Register Index	151	REG[403Ah] Extended Register Data	151							
REG[403Ah], Index[00h] Vendor ID MSB	151	REG[403Ah], Index[01h] Vendor ID LSB	151							
REG[403Ah], Index[02h] Product ID MSB	152	REG[403Ah], Index[03h] Product ID LSB	152							
REG[403Ah], Index[04h] Release Number MSB	152	REG[403Ah], Index[05h] Release Number LSB	152							
REG[403Ah], Index[06h] Receive FIFO Almost Full Threshold	152	REG[403Ah], Index[07h] Transmit FIFO Almost Empty Thresh	nold 152							
REG[403Ah], Index[08h] USB Control	153	REG[403Ah], Index[09h] Maximum Power Consumption	153							
REG[403Ah], Index[0Ah] Packet Control	153	REG[403Ah], Index[0Bh] Reserved	154							
REG[403Ah], Index[0Ch] FIFO Control	154	REG[4040h] USBFC Input Control Register	155							
REG[4042h] Reserved	155	REG[4044h] Pin Input Status / Pin Output Data Register	156							
REG[4046h] Interrupt Control Enable Register 0	156	REG[4048h] Interrupt Control Enable Register 1	156							
REG[404Ah] Interrupt Control Status/Clear Register 0	157	REG[404Ch] Interrupt Control Status/Clear Register 1	158							
REG[404Eh] Interrupt Control Masked Status Register 0	159	REG[4050h] Interrupt Control Masked Status Register 1	159							
REG[4052h] USB Software Reset Register	159	REG[4054h] USB Wait State Register	159							

Table 8-2: S1D13A05 Register Set

Register	Pg	Register	Pg						
2D Acceleration (BitBLT) Register Descriptions (Offset = 8000h)									
REG[8000h] BitBLT Control Register	160	REG[8004h] BitBLT Status Register	161						
REG[8008h] BitBLT Command Register	162	REG[800Ch] BitBLT Source Start Address Register	163						
REG[8010h] BitBLT Destination Start Address Register	164	REG[8014h] BitBLT Memory Address Offset Register	164						
REG[8018h] BitBLT Width Register	164	REG[801Ch] BitBLT Height Register	164						
REG[8020h] BitBLT Background Color Register	165	REG[8024h] BitBLT Foreground Color Register	165						
2D Acceleration (BitBLT) Data Register Descriptions (Offset = 10000h)									
AB16-AB0 = 10000h-1FFFEh, 2D Accelerator (BitBLT) Data Memory Mapped Region Register									

8.3 LCD Register Descriptions (Offset = 0h)

Unless specified otherwise, all register bits are set to 0 during power-on.

8.3.1 Read-Only Configuration Registers

Product Information Register REG[00h] Default = 2Dxx402Dh									Read	Only					
Product Code bits 5-0						n Code 1-0	n/a CNF[6:0] Status								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Display Buffer Size bits 7-0						Product Code bits 5-0						Revision Code bits 1-0			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 31-26 Product Code

These read-only bits indicate the product code. The product code is 001011 (0Bh).

bits 25-24 Revision Code

These are read-only bits that indicates the revision code. The revision code is 01.

bits 22-16 CNF[6:0] Status

These read-only status bits return the status of the configuration pins CNF[6:0]. CNF[6:0] are latched at the rising edge of RESET#.

Note

For a functional description of each configuration bit (CNF[6:0]), see Section 4.3, "Summary of Configuration Options" on page 32.

bits 15-8 Display Buffer Size Bits [7:0]

This is a read-only register that indicates the size of the SRAM display buffer measured in 4K byte increments. The S1D13A05 display buffer is 256K bytes and therefore this register returns a value of 64 (40h).

Value of this register = display buffer size ÷ 4K bytes = 256K bytes ÷ 4K bytes = 64 (40h) bits 7-2 Product Code

These read-only bits indicate the product code. The product code is 001011 (0Bh).

bits 1-0 Revision Code

These are read-only bits that indicates the revision code. The revision code is 01.

8.3.2 Clock Configuration Registers

Memory Clock Configuration Register REG[04h] Default = 00000000h Read/Write									Write						
							n	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a MCLK Divide Select bits 1-0 n/a									BCLK Source Select						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 5-4 MCLK Divide Select Bits [1:0]

These bits determine the divide used to generate the Memory Clock (MCLK) from the Bus Clock (BCLK).

Table 8-3: MCLK Divide Selection

MCLK Divide Select Bits	BCLK to MCLK Frequency Ratio
00	1:1
01	2:1
10	3:1
11	4:1

bit 0 BCLK Source Select

When this bit = 0, the source of the Bus Clock (BCLK) is input pin CLKI or a divided down version of CLKI. CLKI may be divided down using the CLKI to BCLK divide select configuration pins CNF[7:6].

When this bit = 1, the source of the Bus Clock (BCLK) is input pin CLKI2.

Note

Changing this bit allows the BCLK source to be switched in a glitch-free manner.

Pixel Clock REG[08h]	Configu		Regist lt = 000		า								Read/	Write
	n/a													
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
									n	/a	PCLK Select	Source bits 1-0		
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 6-4

PCLK Divide Select Bits [1:0]

These bits determine the divide used to generate the Pixel Clock (PCLK) from the Pixel Clock Source.

Table 8-4: PCLK Divide Selection

PCLK Divide Select Bits	PCLK Source to PCLK Frequency Ratio
000	1:1
001	2:1
010	3:1
011	4:1
1XX	8:1

bits 1-0

PCLK Source Select Bits [1:0]

These bits determine the source of the Pixel Clock (PCLK).

Table 8-5: PCLK Source Selection

PCLK Source Select Bits	PCLK Source
00	MCLK
01	BCLK
10	CLKI
11	CLKI2

8.3.3 Panel Configuration Registers

	Panel Type & MOD Rate Register REG[0Ch] Default = 00000000h Read/Write														
n/a							FPSHIFT Invert	n	/a			MOD Rat	e bits 5-0		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a					HR-TFT PS Mode	Panel Data Format Select	Color/ Mono Panel Select		ata Width 1-0	Reserv ed	n/a	Panel bits			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bit 24

FPSHIFT Invert

This bit inverts the FPSHIFT signal used by active panels. For passive panels, this bit has no effect.

When this bit is 0, FPSHIFT is unchanged.

When this bit is 1, FPSHIFT is inverted.

bits 21-16 MOD Rate Bits [5:0]

These bits are for passive LCD panels only.

When these bits are all 0, the MOD output signal (DRDY) toggles every FPFRAME. For a non-zero value *n*, the MOD output signal (DRDY) toggles every n FPLINE.

bit 8 HR-TFT PS Mode

This bit is for HR-TFT panels only.

This bit selects the timing used for the PS signal. The alternate PS timings (PS1, PS2,

PS3) result in additional power savings on the HR-TFT Panel.

When this bit = 0, the PS signal uses PS1 timing. When this bit = 1, the PS signal uses PS2 timing.

bit 7 Panel Data Format Select

When this bit = 0, 8-bit single color passive LCD panel data format 1 is selected. For AC timing see Section 6.4.5, "Single Color 8-Bit Panel Timing (Format 1)" on page 68. When this bit = 1, 8-bit single color passive LCD panel data format 2 is selected. For AC timing see Section 6.4.6, "Single Color 8-Bit Panel Timing (Format 2)" on page 70.

bit 6 Color/Mono Panel Select

When this bit = 0, a monochrome LCD panel is selected.

When this bit = 1, a color LCD panel is selected.

bits 5-4 Panel Data Width Bits [1:0]

These bits select the data width size of the LCD panel.

Table 8-6: Panel Data Width Selection

Panel Data Width Bits [1:0]	Passive Panel Data Width Size	Active Panel Data Width Size
00	4-bit	9-bit
01	8-bit	12-bit
10	16-bit	18-bit
11	Reserved	Reserved

bit 3 Reserved.

This bit must be set to 0.

bits 1-0 Panel Type Bits[1:0]

These bits select the panel type.

Table 8-7: LCD Panel Type Selection

Panel Type Bits [1:0]	Panel Type
00	STN
01	TFT
10	Reserved
11	HR-TFT

_	ıy Setti	ngs Re	egister												
REG[10h] Default = 00000000h													F	Read/W	rite
n/a						Pixel Doubling Vertical	Pixel Doubling Horiz.	Display Blank	Dithering Disable	Display Blank Polarity	SW Video Invert	PIP ⁺ Window Enable	n/a		ew Mode lect
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a											Bits-per-pixel Select (actual value: 1, 2, 4, 8 or 16 bpp)				p)
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bit 25

Pixel Doubling Vertical Enable

This bit controls the pixel doubling feature for the vertical dimension or height of the panel (i.e. 160 pixel high data doubled to 320 pixel high panel).

When this bit = 1, pixel doubling in the vertical dimension (height) is enabled.

When this bit = 0, there is no hardware effect.

Note

Pixel Doubling is not supported in SwivelView 90° or SwivelView 270° modes.

bit 24

Pixel Doubling Horizontal Enable

This bit controls the pixel doubling feature for the horizontal dimension or width of the panel (i.e. 160 pixel wide data doubled to 320 pixel wide panel)

When this bit = 1, pixel doubling in the horizontal dimension (width) is enabled.

When this bit = 0, there is no hardware effect.

Note

Pixel Doubling is not supported in SwivelView 90° or SwivelView 270° modes.

bit 23

Display Blank

When this bit = 0, the LCD display pipeline is enabled.

When this bit = 1, all applicable LCD data outputs (see Table 4-9: "LCD Interface Pin Mapping," on page 34) are forced to zero or one. The following table summarizes the changes to the signals on FPDAT[17:0] for each combination of bits.

Table 8-8: Display Control Summary

Display Blank (REG[10h] bit 23)	Display Blank Polarity (REG[10h] bit 21)	Software Video Invert (REG[10h] bit 20)	Output Data Lines (FPDAT[17:0])
0	х	0	Normal
U	^	1	Inverted
	0	0	All 0
4		1	All 1
'	1	0	All 1
	l	1	All 0

bit 22 Dithering Disable

When this bit = 0, dithering on the passive LCD panel is enabled, allowing a maximum of 64K colors (2^{18}) or 64 gray shades in 1/2/4/8 bpp mode. In 16bpp mode, only 64K colors (2^{16}) can also be achieved.

When this bit = 1, dithering on the passive LCD panel is disabled, allowing a maximum of $4096 \text{ colors } (2^{12}) \text{ or } 16 \text{ gray shades.}$

The dithering algorithm provides more shades of each primary color.

Note

For a summary of the results of dithering for each color depth, see Table 8-10: "LCD Bit-per-pixel Selection," on page 107.

bit 21 Display Blank Polarity

When this bit = 0, the display blank function operates normally.

When this bit = 1, the display blank function switches polarity.

This bit works in conjunction with bit 23 and bit 20. Table 8-8: "Display Control Summary" summarizes the changes to the signals on FPDAT[17:0] for each combination of bits.

bit 20 Software Video Invert

When this bit = 0, video data is normal.

When this bit = 1, video data is inverted.

This bit works in conjunction with bit 23 and bit 21. Table 8-8: "Display Control Summary" summarizes the changes to the signals on FPDAT[17:0] for each combination of bits.

Note

Video data is inverted after the Look-Up Table

bit 19 PIP+ Window Enable

This bit enables a PIP+ window within the main window. The location of the PIP+ window within the landscape window is determined by the PIP+ X Position register (REG[58h]) and PIP+ Y Position register (REG[5Ch]). The PIP+ window has its own Display Start Address register (REG[50h]) and Memory Address Offset register (REG[54h]). The PIP+ window shares the same color depth and SwivelViewTM orientation as the main window.

bit 17-16 SwivelView Mode Select Bits [1:0]

These bits select different SwivelViewTM orientations:

Table 8-9: SwivelView TM *Mode Select Options*

SwivelView Mode Select Bits	SwivelView Orientation
00	0° (Normal)
01	90°
10	180°
11	270°

bits 4-0

Bit-per-pixel Select Bits [4:0]

These bits select the color depth (bit-per-pixel) for the displayed data for both the main window and the PIP⁺ window (if active).

1, 2, 4 and 8 bpp modes use the 18-bit LUT, allowing maximum 64K colors. 16 bpp mode bypasses the LUT, allowing only 64K colors.

Table 8-10: LCD Bit-per-pixel Selection

		Maximum Number	of Colors/Shades	Max. No. Of
Bit-per-pixel Select Bits [4:0]	Color Depth (bpp)	Passive Panels (Dithering On)	Active Panels	Simultaneously Displayed Colors/Shades
00000		Rese	erved	
00001	1 bpp	64K/64	64K/64	2/2
00010	2 bpp	64K/64	64K/64	4/4
00011		Rese		
00100	4 bpp	64K/64	64K/64	16/16
00101 - 00111		Rese	erved	
01000	01000 8 bpp		64K/64	256/64
10000	16 bpp	64K/64	64K/64	64K/64
10001 - 11111	erved			

Power	Save	Config	uration	Regis	ter										
REG[1	REG[14h] Default = 00000010h													Read/	Write
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a						VNDP Status (RO)	Memory Power Save Status (RO)	n/a	Power Save Enable		n/a		Reserv ed		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bit 7

Vertical Non-Display Period Status (Read-only)

This is a read-only status bit.

When this bit = 0, the LCD panel output is in a Vertical Display Period.

When this bit = 1, the LCD panel output is in a Vertical Non-Display Period.

bit 6

Memory Controller Power Save Status (Read-only)

This read-only status bit indicates the power save state of the memory controller.

When this bit = 0, the memory controller is powered up.

When this bit = 1, the memory controller is powered down and the MCLK source can be turned off.

Note

Memory reads/writes are possible during power save mode because the S1D13A05 dynamically enables the memory controller for display buffer accesses.

bit 4 Power Save Mode Enable

When this bit = 1, the software initiated power save mode is enabled.

When this bit = 0, the software initiated power save mode is disabled.

At reset, this bit is set to 1. For a summary of Power Save Mode, see Section 15, "Power Save Mode" on page 183.

Note

Memory reads/writes are possible during power save mode because the S1D13A05 dynamically enables the memory controller for display buffer accesses.

bit 0 Reserved

This bit must be set to 0.

8.3.4 Look-Up Table Registers

Look-	Up Tak	ole Writ	e Regi	ster											
REG[18h] Default = 00000000h													Write	Only	
LUT Write Address										LUT Red \	Write Data	I		n/	'a
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	LUT Green Write Data n/a									LUT Blue	Write Data	1		n/	′a
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note

The S1D13A05 has three 256-position, 6-bit wide LUTs, one for each of red, green, and blue (see Section 12, "Look-Up Table Architecture" on page 169).

Note

This is a write-only register and returns 00h if read.

bits 31-24 LUT Write Address Bits [7:0]

These bits form a pointer into the Look-Up Table (LUT) which is used to write the LUT Red, Green, and Blue data. When the S1D13A05 is set to a host bus interface using little endian (CNF4 = 0), the RGB data is updated to the LUT with the completion of a write to these bits.

Note

When a value is written to the LUT Write Address Bits, the same value is automatically placed in the LUT Read Address Bits (REG[1Ch] bits 31-24).

bits 23-18 LUT Red Write Data Bits [5:0]

These bits contains the data to be written to the red component of the Look-Up Table. The LUT position is controlled by the LUT Write Address bits (bits 31-24).

bits 15-10 LUT Green Write Data Bits [5:0]

These bits contains the data to be written to the green component of the Look-Up Table.

The LUT position is controlled by the LUT Write Address bits (bits 31-24).

bits 7-2 LUT Blue Write Data Bits [5:0]

These bits contains the data to be written to the blue component of the Look-Up Table. The LUT position is controlled by the LUT Write Address bits (bits 31-24). When the S1D13A05 is set to a host bus interface using big endian (CNF4 = 1), the RGB data is updated to the LUT with the completion of a write to these bits.

Look-l	Jp Tab	le Rea	d Regi	ster											
REG[1	Ch]		Defau	It = 000	000001	า				1	Write O	nly (bits	s 31-24)/Read	Only
		LUT	Read Add	ress (write	only)					LUT Red I	Read Data	ı		n,	′a
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	L	.UT Green	Read Dat	а		n	/a			LUT Blue	Read Data	l		n,	′a
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note

The S1D13A05 has three 256-position, 6-bit wide LUTs, one for each of red, green, and blue (see Section 12, "Look-Up Table Architecture" on page 169).

bits 31-24 LUT Read Address Bits [7:0] (Write Only)

This register forms a pointer into the Look-Up Table (LUT) which is used to read LUT data. Red data is read from bits 23-18, green data from bits 15-10, and blue data from bits 7-2.

Note

If a write to the LUT Write Address Bits (REG[18h] bits 31-24) is made, the LUT Read Address bits are automatically updated with the same value.

bits 23-18 LUT Red Read Data Bits [5:0] (**Read Only**)

These bits point to the data from the red component of the Look-Up Table. The LUT position is controlled by the LUT Read Address bits (bits 31-24). This is a read-only register.

bits 15-10 LUT Green Read Data Bits [5:0] (**Read Only**)

These bits point to the data from the green component of the Look-Up Table. The LUT position is controlled by the LUT Read Address bits (bits 31-24). This is a read-only register.

bits 7-2 LUT Blue Read Data Bits [5:0] (**Read Only**)

These bits point to the data from the blue component of the Look-Up Table. The LUT position is controlled by the LUT Read Address bits (bits 31-24). This is a read-only register.

8.3.5 Display Mode Registers

Horizo	ontal To	otal Re	gister												
REG[2	20h]		Defau	It = 000	000001	า								Read/	Write
							n	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				n/a						Horizo	ntal Total	bits 6-0			
15	14	13	12	11	10	9	7	6	5	4	3	2	1	0	

bits 6-0

Horizontal Total Bits [6:0]

These bits specify the LCD panel Horizontal Total period, in 8 pixel resolution. The Horizontal Total is the sum of the Horizontal Display period and the Horizontal Non-Display period. Since the maximum Horizontal Total is 1024 pixels, the maximum panel resolution supported is 800x600.

REG[20h] bits $6:0 = (Horizontal Total in number of pixels \div 8) - 1$

Note

¹ For all panels this register must be programmed such that:

HDPS + HDP < HT

HT - HDP ≥ 8MCLK

³ See Section 6.4, "Display Interface" on page 60.

Horiz REG[ontal D 24h]	isplay		_	er 0000001	า								Read/\	Write
							n	ı/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				n/a						H	lorizontal [Display Pe	riod bits 6-	0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 6-0

Horizontal Display Period Bits [6:0]

These bits specify the LCD panel Horizontal Display period, in 8 pixel resolution. The Horizontal Display period should be less than the Horizontal Total to allow for a sufficient Horizontal Non-Display period.

REG[24h] bits 6:0 = (Horizontal Display Period in number of pixels \div 8) - 1

Note

For passive panels, HDP must be a minimum of 32 pixels and must be increased by multiples of 16.

For TFT panels, HDP must be a minimum of 8 pixels and must be increased by multiples of 8.

Note

See Section 6.4, "Display Interface" on page 60.

² For passive panels, this register must be programmed such that: HPS + HPW < HT

Horizo REG[2		isplay			Position 1000001	_	ter							Read/	Write
	n/a														
31 30 29 28 27 26 25 24 23										21	20	19	18	17	16
		n	/a					Но	rizontal Di	splay Perio	od Start Po	sition bits	9-0		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 9-0

Horizontal Display Period Start Position Bits [9:0]

These bits specify a value used in the calculation of the Horizontal Display Period Start Position (in 1 pixel resolution) for TFT and HR-TFT panels.

For passive LCD panels these bits must be set to 00h which will result in HDPS = 22.

HDPS = (REG[28h] bits 9-0) + 22

For TFT panels, HDPS is calculated using the following formula.

HDPS = (REG[28h] bits 9-0) + 5

Note

This register must be programmed such that the following formula is valid. HDPS + HDP < HT

FPLIN REG[2		ster	Defau	lt = 000	100000	า								Read/\	Write
			n	/a				FPLINE Polarity			FPLINE F	Pulse Widt	h bits 6-0		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n,	/a						FPLINE	Pulse Sta	rt Position	bits 9-0			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bit 23

FPLINE Pulse Polarity

This bit selects the polarity of the horizontal sync signal. For passive panels, this bit must be set to 1. For active panels, this bit is set according to the horizontal sync signal of the panel (typically FPLINE or LP). This bit has no effect for TFT Type 2 and TFT Type 3 panels.

When this bit = 0, the horizontal sync signal is active low.

When this bit = 1, the horizontal sync signal is active high.

bits 22-16

FPLINE Pulse Width Bits [6:0]

These bits specify the width of the panel horizontal sync signal, in 1 pixel resolution. The horizontal sync signal is typically FPLINE or LP, depending on the panel type.

REG[2Ch] bits 22:16 = FPLINE Pulse Width in number of pixels - 1

Note

For passive panels, these bits must be programmed such that the following formula is valid.

HPW + HPS < HT

Note

See Section 6.4, "Display Interface" on page 60.

bits 9-0 FPLINE Pulse Start Position Bits [9:0]

These bits specify the start position of the horizontal sync signal, in 1 pixel resolution.

FPLINE Pulse Start Position in pixels = (REG[2Ch] bits 9-0) + 1

Note

For passive panels, these bits must be programmed such that the following formula is valid.

HPW + HPS < HT

Note

See Section 6.4, "Display Interface" on page 60.

Vertic	al Tota	I Regis	ter												
REG[3	30h]		Defau	It = 000	100000l	า								Read/	Write
	n/a														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n,	/a		,	Vertical To	tal bits 9-0)							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 9-0

Vertical Total Bits [9:0]

These bits specify the LCD panel Vertical Total period, in 1 line resolution. The Vertical Total is the sum of the Vertical Display Period and the Vertical Non-Display Period. The maximum Vertical Total is 1024 lines.

REG[30h] bits 9:0 = Vertical Total in number of lines - 1

Note

¹ This register must be programmed such that the following formula is valid.

VT > VDPS + VDP

² If an HR-TFT panel is selected, the following formula must also apply.

VT > (REG[B8h] bits 2-0) + VDP + VPS + 1

³ See Section 6.4, "Display Interface" on page 60.

Vertic REG[3	al Disp 34h]	lay Pe		_	000001	า									Read/	Write
	n/a															
31	30	29	28	27	26	25	24	23	2	2	21	20	19	18	17	16
		n	/a							Verti	cal Display	Period bi	ts 9-0			
15	14	13	12	11	10	9	8	7	(6	5	4	3	2	1	0

bits 9-0 Vertical Display Period Bits [9:0]

These bits specify the LCD panel Vertical Display period, in 1 line resolution. The Vertical Display period should be less than the Vertical Total to allow for a sufficient Vertical Non-Display period.

REG[34h] bits 9:0 = Vertical Display Period in number of lines - 1

Note

¹ This register must be programmed such that the following formula is valid.

VT > VDPS + VDP

² If an HR-TFT panel is selected, the following formula must also apply.

VT > (REG[B8h] bits 2-0) + VDP + VPS + 1

³ See Section 6.4, "Display Interface" on page 60.

Vertice REG[3	al Disp 38h]	lay Per			ition R 000001	•	•								Read/	Write
	ī				Ī		r	ı/a							ī	
31	30	29	28	27	26	25	24	23		22	21	20	19	18	17	16
		n/	/a						Ver	tical Disp	olay Period	Start Pos	ition bits 9	9-0		
15	14	13	12	11	10	9	8	7		6	5	4	3	2	1	0

bits 9-0

Vertical Display Period Start Position Bits [9:0]

These bits specify the Vertical Display Period Start Position for TFT and HR-TFT panels in 1 line resolution. For passive LCD panels these bits must be set to 00h.

For passive LCD panels these bits must be set to 00h.

For TFT panels, VDPS is calculated using the following formula.

VDPS = REG[38h] bits 9-0

Note

¹ This register must be programmed such that the following formula is valid.

VT > VDPS + VDP

² If an HR-TFT panel is selected, the following formula must also apply.

VT > (REG[B8h] bits 2-0) + VDP + VPS + 1

³ See Section 6.4, "Display Interface" on page 60.

FPFR/	AME R	egister													
REG[3	3Ch]		Defau	It = 000	100000l	1							R	lead/W	rite
			n	/a				FPFRAME Polarity		n/	′a		FPFRA	ME Pulse bits 2-0	· Width
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n/	'a					ı	PFRAME	Pulse Sta	rt Position	bits 9-0			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bit 23 FPFRAME Pulse Polarity

This bit selects the polarity of the vertical sync signal. For passive panels, this bit must be set to 1. For TFT panels, this bit is set according to the horizontal sync signal of the panel (typically FPFRAME, SPS). This bit has no effect for TFT Type 2 panels.

When this bit = 0, the vertical sync signal is active low. When this bit = 1, the vertical sync signal is active high.

bits 18-16 FPFRAME Pulse Width Bits [2:0]

These bits specify the width of the panel vertical sync signal, in 1 line resolution. The vertical sync signal is typically FPFRAME, or SPS, depending on the panel type.

REG[3Ch] bits 2:0 = FPFRAME Pulse Width in number of lines - 1

Note

See Section 6.4, "Display Interface" on page 60.

bits 9-0 FPFRAME Pulse Start Position Bits [9:0]

These bits specify the start position of the vertical sync signal, in 1 line resolution.

For passive panels, these bits must be set to 00h.

For TFT panels, VDPS is calculated using the following formula.

VPS = REG[3Ch] bits 9-0

Note

See Section 6.4, "Display Interface" on page 60.

Main REG[Windov 40h]	v Displ	-		ess Re 1000001	_								Read/	Write
	n/a														
31														17	16
	·	•	3		М	ain Windo	w Display	Start Addr	ess bits 15	-0	•		-	•	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 16-0

Main Window Display Start Address Bits [16:0]


This register specifies the starting address, in DWORDS, for the LCD image in the display buffer for the main window.

Note that this is a double-word (32-bit) address. An entry of 00000h into these registers represents the first double-word of display memory, an entry of 00001h represents the second double-word of the display memory, and so on. Calculate the Display Start Address as follows:

REG[40h] bits $16:0 = \text{image address} \div 4 \text{ (valid only for SwivelView } 0^{\circ}\text{)}$

Note

For information on setting this register for other SwivelView orientations, see Section 13, "SwivelViewTM" on page 175.

bits 9-0

Main Window Line Address Offset Bits [9:0]

This register specifies the offset, in DWORDS, from the beginning of one display line to the beginning of the next display line in the main window. **Note that this is a 32-bit address increment.** Calculate the Line Address Offset as follows:

REG[44h] bits 9:0 = display width in pixels \div (32 \div bpp)

Note

A virtual display can be created by programming this register with a value greater than the formula requires. When a virtual display is created the image width is larger than the display width and the displayed image becomes a window into the larger virtual image.

Extended Panel Type Register									
REG[48h] Default = 00000000h								Read/	Write
	n/a	а							
31 30 29 28 27 26 25	24	23	22	21	20	19	18	17	16
n/a	Data Compare Invert Enable		r	n/a		Exte	ended Pan	el Type bit	s 3-0
15 14 13 12 11 10 9	8	7	6	5	4	3	2	1	0

bit 8 Data Compare Invert Enable

This bit can be used to lower power consumption for TFT Type 2 and TFT Type 3 Interfaces. The Data Compare and Invert function reduces the amount of data toggled by counting the number of bits that are changed (1 to 0 or 0 to 1) from the previous pixel data. If more than half of the bits are changed the data is inverted and the lesser amount of bits are toggled. For all other panel interfaces it has no effect.

When this bit = 0, the Data Compare and Invert functions are disabled. When this bit = 1, the Data Compare and Invert functions are enabled.

bits 3-0 Extended Panel Type Bits [3:0]

These bits override the setting in REG[0Ch] bits 1-0 and allow selection of the alternate TFT panel types.

 REG[48h] Bits [3:0]
 Panel Type

 0000
 no effect from REG[0Ch] bits 1-0

 0001
 TFT Type 2

 0010
 TFT Type 3

 0011
 TFT Type 4

 0100
 Casio TFT

 0101 - 1111
 Reserved

Table 8-11: Extended Panel Type Selection

8.3.6 Picture-in-Picture Plus (PIP+) Registers

I P† [EG[{		-	Start A		s Regis It = 000		h								Read/	Write
n/a															bit 16	
31 30 29 28 27 26 25 24 23 22 21 20 19 18												17	16			
							PIP+ Di	splay Star	Address	bits 15-0						
15	1	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 16-0

PIP⁺ Display Start Address Bits [16:0]

These bits form the 17-bit address for the starting double-word of the PIP+ window.

Note that this is a double-word (32-bit) address. An entry of 00000h into these registers represents the first double-word of display memory, an entry of 00001h represents the second double-word of the display memory, and so on.

Note

These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[10h] bit 19).

	PIP ⁺ Line Address Offset Register REG[54h] Default = 00000000h Read/Write														
	n/a														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	n/a PIP ⁺ Line Address Offset bits 9-0														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 9-0

PIP⁺ Window Line Address Offset Bits [9:0]

These bits are the LCD display's 10-bit address offset from the starting double-word of line "n" to the starting double-word of line "n + 1" for the PIP window. **Note that this is a 32-bit address increment.**

Note

PIP* X Posi	PIP ⁺ X Positions Register												
REG[58h] Default = 00000000h Read/Write													
n/a PIP ⁺ X End Position bits 9-0													
31 30	29 28	27	26	25	24	23	22	21	20	19	18	17	16
n/a PIP ⁺ X Start Position							osition bits	s 9-0					
15 14	13 12	11	10	9	8	7	6	5	4	3	2	1	0

Note

The effect of REG[58h] through REG[5Ch] takes place only after REG[5Ch] is written and at the next vertical non-display period.

bits 25-16

PIP⁺ Window X End Position Bits [9:0]

These bits determine the X end position of the PIP⁺ window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the X end position may not be a horizontal position value (only true in 0° and 180° SwivelView). For further information on defining the value of the X End Position register, see Section 14, "Picture-in-Picture Plus (PIP+)" on page 180.

The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the X end position is incremented by x pixels where x is relative to the current color depth

the current color depth.

Color Depth	Pixel Increment (x)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

Table 8-12: 32-bit Address Increments for Color Depth

For 90° and 270° SwivelView the X end position is incremented in 1 line increments.

Depending on the color depth, some of the higher bits in this register are unused because the maximum horizontal display width is 1024 pixels.

Note

bits 9-0

PIP⁺ Window X Start Position Bits [9:0]

These bits determine the X start position of the PIP⁺ window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the X start position may not be a horizontal position value (only true in 0° and 180° SwivelView). For further information on defining the value of the X Start Position register, see Section 14, "Picture-in-Picture Plus (PIP+)" on page 180.

The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the X start position is incremented by x pixels where x is relative to the current color depth.

Table 8-13: 32-bit Address Increments for Color Depth

Color Depth	Pixel Increment (x)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

For 90° and 270° SwivelView the X start position is incremented in 1 line increments.

Depending on the color depth, some of the higher bits in this register are unused because the maximum horizontal display width is 1024 pixels.

Note

PIP+ Y	Positi	ions Re	egister												
REG[5	Ch]		Defau	It = 000	0000001	า								Read/	Write
	n/a PIP ⁺ Y End Position bits 9-0														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	n/a PIP+ Y Start Position bits 9-0														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note

- ¹ The effect of REG[58h] through REG[5Ch] takes place only after REG[5Ch] is written and at the next vertical non-display period.
- ² For host bus interfaces using little endian (CNF4 = 0), a write to bits 31-24 causes the PIP⁺ Window Y End Position to take effect.

For host bus interfaces using big endian (CNF4 = 1), a write to bits 7-0 causes the PIP^+ Window Y End Position to take effect.

bits 25-16 PIP⁺ Window Y End Position Bits [9:0]

These bits determine the Y end position of the PIP⁺ window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the Y end position may not be a vertical position value (only true in 0° and 180° SwivelView). For further information on defining the value of the Y End Position register, see

Section 14, "Picture-in-Picture Plus (PIP+)" on page 180.

The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y end position is incremented in 1 line increments. For 90° and 270° SwivelView the Y end position is incremented by y pixels where y is relative to the current color depth.

Color Depth	Pixel Increment (y)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

Table 8-14: 32-bit Address Increments for Color Depth

Depending on the color depth, some of the higher bits in this register are unused because the maximum vertical display height is 1024 pixels.

Note

bits 9-0

PIP⁺ Window Y Start Position Bits [9:0]

These bits determine the Y start position of the PIP⁺ window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the Y start position may not be a vertical position value (only true in 0° and 180° SwivelView). For further information on defining the value of the Y Start Position register, see Section 14, "Picture-in-Picture Plus (PIP+)" on page 180.

The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y start position is incremented in 1 line increments. For 90° and 270° SwivelView the Y start position is incremented by y pixels where y is relative to the current color depth.

Table 8-15: 32-bit Address Increments for Color Depth

Color Depth	Pixel Increment (y)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

Depending on the color depth, some of the higher bits in this register are unused because the maximum vertical display height is 1024 pixels.

Note

8.3.7 Miscellaneous Registers

	Reserved REG[60h] Default = 00000000h Read/Write														
n/a Reserved															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a Reserved n/a Reserved n/a															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

	GPIO Status and Control Register REG[64h] Default = 20000000h Re										Read/	Write			
GPIO7 Input Enable	Input								GPIO1 Config	GPIO0 Config					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a								GPIO7 Control/ Status	GPIO6 Control/ Status	GPIO5 Control/ Status	GPIO4 Control/ Status	GPIO3 Control/ Status	GPIO2 Control/ Status	GPIO1 Control/ Status	GPIO0 Control/ Status
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

The S1D13A05 GPIO pins default to inputs, however they can be individually configured to outputs or inputs using the GPIO[7:0] Config bits (bits 23-16). If a GPIO pin is configured as an input, the input functionality must be enabled using the corresponding GPIO[7:0] Input Enable pin (see bits 31-24). Once the GPIO pin has been configured, it can be controlled/read using the GPIO[7:0] Control/Status bits (bits 7-0). See the individual bit descriptions for further details.

Some GPIOs must be configured as outputs after every RESET for use with some extended panel types (i.e. Sharp HR-TFT, Casio TFT, etc.). See Table 4-9: "LCD Interface Pin Mapping," on page 34 and the individual bit descriptions for bits 7-0 for specific information on each GPIO pin.

bits 31-24

GPIO[7:0] Input Enable bits

These bits individually enable the input function for each GPIO pin (GPIO[7:0]). After power-on/reset, each bit must be set to a 1 to enable the input function of each GPIO pin (default is 0 except for GPIO5 which is 1). If the GPIO pin is configured as an output the GPIO[7:0] Input Enable bit has no effect.

Note

At power-on/reset, the GPIO5 Input Enable bit (bit 29) defaults to 1.

bits 23-16

GPIO[7:0] IO Configuration

At power-on/reset, the GPIO[7:0] pins default to inputs. These bits individually configure each GPIO pin as either an output or input.

When these bits = 0, the associated GPIO pin is configured as an input.

When these bits = 1, the associated GPIO pin is configured as an output.

This may be required for some extended panel types (i.e. Sharp HR-TFT, Casio TFT, etc.) or USB. See Table 4-9: "LCD Interface Pin Mapping," on page 34 and the individual bit descriptions for bits 7-0 for specific information on each GPIO pin.

Note

If a GPIO pin is configured as an input, the input function of the GPIO pin must be enabled using the corresponding GPIOx Input Enable bit (bits 31-24) before the input configuration takes effect.

bit 7

GPIO7 IO Control/Status

The following table shows the multiple uses of GPIO7.

Table 8-16: GPIO7 Usage

	Function							
Pin Usage	Out	put	Input					
	Write 0	Write 1	Read					
GPIO7	GPIO7 driven low	GPIO7 driven high	GPIO7 status returned					
USB	not available (used by USBDP)	not available (used by USBDP)	not available (used by USBDP)					

bit 6

GPIO6 IO Control/Status

The following table shows the multiple uses of GPIO6.

Table 8-17: GPIO6 Usage

	Function							
Pin Usage	Ou	tput	Input					
	Write 0	Write 1	Read					
GPIO6	GPIO6 driven low	GPIO6 driven high	GPIO6 status returned					
USB	not available (used by USBDM)	not available (used by USBDM)	not available (used by USBDM)					

bit 5

GPIO5 IO Control/Status

The following table shows the multiple uses of GPIO5.

Table 8-18: GPIO5 Usage

	Function								
Pin Usage	Out	Input							
	Write 0	Write 1	Read						
GPIO5	GPIO5 driven low	GPIO5 driven high	GPIO5 status returned						
USB	not available (used by USBDETECT)	not available (used by USBDETECT)	not available (used by USBDETECT)						

bit 4

GPIO4 IO Control/Status

The following table shows the multiple uses of GPIO4.

Table 8-19: GPIO4 Usage

		Function	
Pin Usage	Out	Input	
	Write 0	Write 1	Read
GPIO4	GPIO4 driven low	GPIO4 driven high	GPIO4 status returned
USB	not available (used by USBPUP)	not available (used by USBPUP)	not available (used by USBPUP)

bit 3 GPIO3 IO Control/Status

The following table shows the multiple uses of GPIO3.

Table 8-20: GPIO3 Usage

		Function	
Pin Usage	Out	Input	
	Write 0	Write 1	Read
GPIO3	GPIO3 driven low	GPIO3 driven high	GPIO3 status returned
Sharp HR-TFT	not available (used by SPL)	not available (used by SPL)	not available (used by SPL)
Casio TFT	not available (used by STH)	not available (used by STH)	not available (used by STH)
TFT Type 2	not available (used by STH)	not available (used by STH)	not available (used by STH)
TFT Type 3	not available (used by EIO)	not available (used by EIO)	not available (used by EIO)

bit 2 GPIO2 IO Control/Status

The following table shows the multiple uses of GPIO2.

Table 8-21: GPIO2 Usage

		Function						
Pin Usage	Out	tput	Input					
	Write 0	Write 1	Read					
GPIO2	GPIO2 driven low	GPIO2 driven high	GPIO2 status returned					
Sharp HR-TFT	not available (used by REV)	not available (used by REV)	not available (used by REV)					
Casio TFT	not available (used by FRP)	not available (used by FRP)	not available (used by FRP)					
TFT Type 2	not available (used by POL)	not available (used by POL)	not available (used by POL)					
TFT Type 3	not available (used by POL)	not available (used by POL)	not available (used by POL)					

bit 1 GPIO1 IO Control/Status

The following table shows the multiple uses of GPIO1.

Table 8-22: GPIO1 Usage

		Function					
Pin Usage	Out	Input					
	Write 0	Write 1	Read				
GPIO1	GPIO1 driven low	GPIO1 driven high	GPIO1 status returned				
Sharp HR-TFT	not available (used by CLS)	not available (used by CLS)	not available (used by CLS)				
Casio TFT	GRES forced low	GRES enabled	GRES status returned				
TFT Type 2	not available (used by AP)	not available (used by AP)	not available (used by AP)				
TFT Type 3	OE forced low	OE enabled	OE status returned				

bit 0 GPIO0 IO Control/Status

The following table shows the multiple uses of GPIO0.

Table 8-23: GPIO0 Usage

		Function	
Pin Usage	Out	Input	
	Write 0	Write 1	Read
GPIO0	GPIO0 driven low	GPIO0 driven high	GPIO0 status returned
Sharp HR-TFT	not available (used by PS)	not available (used by PS)	not available (used by PS)
Casio TFT	not available (used by POL)	not available (used by POL)	not available (used by POL)
TFT Type 2	not available (used by VCLK)	not available (used by VCLK)	not available (used by VCLK)
TFT Type 3	not available (used by CPV)	not available (used by CPV)	not available (used by CPV)

			ol	Regis	ter													
R	REG[68h] Default = 00000000h															Read/Write		
	n/a																	
	31	30		29	28	27	26	25	24	23	22	21	20	19	18	17	16	
				n/a			GPO10	GPO9	GPO8	GPO7	GPO6	GPO5	GPO4	GPO3	GPO2	GPO1	GPO0	
	Control Contro													Control	Control			
	15	14		13	12	11	10	9	8	7	6	5	4	3	2	1	0	

bit 10 GPO10 Control

When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO10 high and writing a 0 to this bit drives GPO10 low. A read from this bit returns the status of GPO10.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit sets PDME = 1 and writing a 0 sets PDME = 0.

bit 9 GPO9 Control

When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO9 high and writing a 0 to this bit drives GPO9 low. A read from this bit returns the status of GPO9.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit sets XSTBY = 1 and writing a 0 sets XSTBY = 0.

bit 8 GPO8 Control

When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO8 high and writing a 0 to this bit drives GPO8 low. A read from this bit returns the status of GPO8.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit sets XOHV = 1 and writing a 0 sets XOHV = 0.

bit 7 GPO7 Control

When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO7 high and writing a 0 to this bit drives GPO7 low. A read from this bit returns the status of GPO7.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit sets XRESV = 1 and writing a 0 sets XRESV = 0.

bit 6 GPO6 Control

When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO6 high and writing a 0 to this bit drives GPO6 low. A read from this bit returns the status of GPO6.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit sets XRESH = 1 and writing a 0 sets XRESH = 0.

bit 5 GPO5 Control

When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO5 high and writing a 0 to this bit drives GPO5 low. A read from this bit returns the status of GPO5.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit enables PCLK2 and writing a 0 forces PCLK2 low.

bit 4 GPO4 Control

When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO4 high and writing a 0 to this bit drives GPO4 low. A read from this bit returns the status of GPO4.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit enables PCLK1 and writing a 0 forces PCLK1 low.

bit 3 GPO3 Control

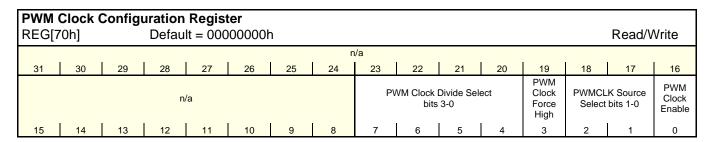
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO3 high and writing a 0 to this bit drives GPO3 low. A read from this bit returns the status of GPO3.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), GPO3 is not available.

bit 2 GPO2 Control

When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO2 low and writing a 0 to this bit drives GPO2 high. A read from this bit returns the status of GPO2.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit enables XOEV and writing a 0 sets XOEV = 0.


bit 1 GPO1 Control

When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO1 high and writing a 0 to this bit drives GPO1 low. A read from this bit returns the status of GPO1.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit enables VCOM and writing a 0 sets VCOM = 0.

bit 0 GPO0 Control

Writing a 1 to this bit drives GPO0 high and writing a 0 to this bit drives GPO0 low. A read from this bit returns the status of GPO0.

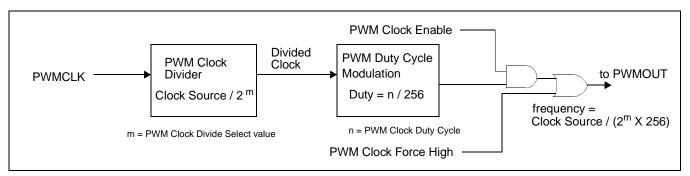


Figure 8-1: PWM Clock Block Diagram

Note

For further information on PWMCLK, see Section 7.1.4, "PWMCLK" on page 96.

bits 7-4 PWM Clock Divide Select Bits [3:0]

The value of these bits represents the power of 2 by which the selected PWM clock source is divided.

Table 8-24: PWM Clock Divide Select Options

PWM Clock Divide Select Bits [3:0]	PWM Clock Divide Amount
0h	1
1h	2
2h	4
3h	8
4h	16
5h	32
6h	64
7h	128
8h	256
9h	512
Ah	1024
Bh	2048
Ch	4096
Dh	8192
Eh	16384
Fh	32768

Note

This divided clock is further divided by 256 before it is output at PWMOUT.

bit 3 PWM Clock Force High

When this bit = 0, the PWMOUT pin function is controlled by the PWM Clock enable bit. When this bit = 1, the PWMOUT pin is forced to high.

bits 2-1 PWMCLK Source Select Bits [1:0]

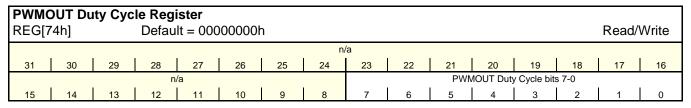
These bits determine the source of PWMCLK.

Table 8-25: PWMCLK Source Selection

REG[70h] bits 2-1	PWMCLK Source
00	CLKI
01	CLKI2
10	BCLK
11	PCLK

Note

For further information on the PWMCLK source select, see Section 7.2, "Clock Selection" on page 97.


bit 0 PWM Clock Enable

When this bit = 0, PWMOUT output acts as a general purpose output pin controllable by bit 3 of REG[70h].

When this bit = 1, the PWM Clock circuitry is enabled.

Note

The PWM Clock circuitry is disabled when Power Save Mode is enabled.

bits 7-0 PWMOUT Duty Cycle Bits [7:0]

This register determines the duty cycle of the PWMOUT output.

Table 8-26: PWMOUT Duty Cycle Select Options

PWMOUT Duty Cycle [7:0]	PWMOUT Duty Cycle
00h	Always Low
01h	High for 1 out of 256 clock periods
02h	High for 2 out of 256 clock periods
FFh	High for 255 out of 256 clock periods

Scratch	Scratch Pad A Register														
REG[80	ո]		Defau	It = not	applica	able								Read/	Write
	Scratch Pad A bits 31-24														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						S	cratch Pac	A bits 15	-0						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 31-0

Scratch Pad A Bits [31:0]

This register contains general purpose read/write bits. These bits have no effect on hard-ware.

Note

The contents of the Scratch Pad A register defaults to an un-defined state after initial power-up. Any data written to this register remains intact when the S1D13A05 is reset, as long as the chip is not powered off.

Scrato REG[8	ch Pad 34h]	B Regi		lt = not	applica	able								Read/	Write
						S	cratch Pad	B bits 31-	24						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						S	Scratch Pag	d B bits 15	-0						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 31-0

Scratch Pad B Bits [31:0]

This register contains general purpose read/write bits. These bits have no effect on hard-ware.

Note

The contents of the Scratch Pad B register defaults to an un-defined state after initial power-up. Any data written to this register remains intact when the S1D13A05 is reset, as long as the chip is not powered off.

Scrate	ch Pad	C Reg	gister																	
REG[8	38h]		Def	ault	= no	ot a	pplic	cab	le										Read/	Write
										Scratch Pa	d C bits 31	-24								
31	30	29	28	1	27		26		25	24	23	22	21	20	1	19	18	1	17	16
										Scratch Pa	d C bits 15	i- 0								
15	14	13	12	1	11	1	10	Ì	9	8	7	6	5	4		3	2		1	0

bits 31-0

Scratch Pad C Bits [31:0]

This register contains general purpose read/write bits. These bits have no effect on hardware.

Note

The contents of the Scratch Pad C register defaults to an un-defined state after initial power-up. Any data written to this register remains intact when the S1D13A04 is reset, as long as the chip is not powered off.

8.3.8 Extended Panel Registers

IR-TI EG[/	-T CLS 40h]	Width	_	er It = 000	0012C	h								Read/	Write
							n/	'a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			n/a							CLS P	ulse Width	bits 8-0			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 8-0

CLS Pulse Width Bits [8:0]

This register determines the width of the CLS signal in PCLKs.

Note

This register must be programmed such that the following formula is valid. (REG[A0h] bits 8-0) > 0

HR-TI REG[/	FT PS1 A4h]	Rising	_	Registe It = 000		n								Read/	Write
							n,	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				n,	/a						PS	S1 Rising I	Edge bits 5	5-0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 5-0

PS1 Rising Edge Bits [5:0]

This register determines the number of PCLKs between the CLS falling edge and the PS1 rising edge.

HR-T REG[Rising	_	Regist lt = 000		4h									Read/	Write
								n,	/a							
31	30	29	28	27	26	- [25	24	23	22	21	20	19	18	17	16
			n	/a							P	S2 Rising I	Edge bits 7	'-0		
15	14	13	12	11	10	1	9	8	7	6	5	4	3	2	1	0

bits 7-0

PS2 Rising Edge Bits [7:0]

This register determines the number of PCLKs between the LP falling edge and the first PS2 rising edge.

Note

This register must be programmed such that the following formula is valid. (REG[A8h] bits 7-0) > 0

HR-TF	T PS2	Toggle	Width	Regis	ter										
REG[A	ACh]		Defau	It = 000	0000A	h							Read/	Write	
							n	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				n/a							PS2 To	ggle Width	bits 6-0		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 6-0

PS2 Toggle Width Bits [6:0]

This register determines the width of the PS2 signal before toggling (in number of PCLKs).

Note

This register must be programmed such that the following formula is valid. $(REG[ACh] \ bits \ 6-0) > 0$

HR-TI REG[I	F T PS3 B0h]	Signal		Regist It = 000		า								Read/	Write
							n	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				n/a							PS3 Sig	gnal Width	bits 6-0		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 6-0

PS3 Signal Width Bits [6:0]

This register determines the width of the PS3 signal in PCLKs.

Note

This register must be programmed such that the following formula is valid. $(REG[B0h] \ bits \ 6-0) > 0$

HR-TF REG[E	T REV 34h]	Toggl		Regis ult = 000		h								Read/	Write
							n,	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					n/a							REV	Toggle bit	s 4-0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 4-0

REV Toggle Bits [4:0]

This register determines the width in PCLKs to toggle the REV signal prior to LP rising edge.

HR-TF	T PS1/	2 End	Regist	er											
REG[E	38h]		Defau	It = 000	00007I	า								Read/	Write
							n,	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						n/a							PS1	/2 End bits	3 2-0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 2-0

PS1/2 End Bits [2:0]

This register allows the PS signal to continue into the vertical non-display period (in lines).

Note

This register must be programmed such that the following formula is valid. VT > (REG[B8h] bits 2-0) + VDP + VPS + 1

Type 2 REG[E		Configu		_	er 0000001	า								Read/	Write
							n,	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
POL Type	n/a	AP	Pulse Widel bits 2-0	dth	n/a	n/a AP Rising Position bits 1-0 n/a VCLK Hold bits 1-0 VCLK Setup bits 1-0									
15	1/	13	12	1 11	10	0	Ω	7	6	5	4	٦ ا	2	1	١ ،

bit 15

POL Type

This bit selects how often the POL signal is toggled. The S1D13A05 GPIO2 pin controls the POL signal used for the TFT Type 2 Interface. For all other panel interfaces this bit has no effect.

When this bit = 0, the POL signal is toggled every line.

When this bit = 1, the POL signal is toggled every frame.

bits 13-11

AP Pulse Width Bits [2:0]

These bits specify the AP Pulse Width used for the TFT Type 2 Interface. The S1D13A05 GPIO1 pin controls the AP signal for the TFT Type 2 Interface. For all other panel interfaces it has no effect.

Table 8-27: AP Pulse Width

REG[4Ch] bits 13-11	AP Pulse Width (in PCLKs)
000	20
001	40
010	80
011	120
100	150
101	190
110	240
111	270

bits 9-8 AP Rising Position Bits [1:0]

These bits specify the TFT Type 2 AC timing parameter from the rising edge of FPLINE (STB) to the rising edge of GPIO1 (AP). The parameter is selected as follows. For all other panel interfaces it has no effect.

Table 8-28: AP Rising Position

REG[4Ch] bits 9-8	AP Rising Position (in PCLKs)
00	40
01	52
10	68
11	90

bits 4-3 VCLK Hold Bits [1:0]

These bits specify the TFT Type 2 AC timing parameter from the rising edge of FPLINE (STB) to the falling edge of GPIO0 (VCLK). The parameter is selected as follows. For all other panel interfaces it has no effect.

Table 8-29: VCLK Hold

REG[4Ch] bits 4-3	VCLK Hold (in PCLKs)
00	7
01	9
10	12
11	16

bits 1-0 VCLK Setup Bits [1:0]

These bits specify the TFT Type 2 AC timing parameter from the rising edge of GPIO0 (VCLK) to the rising edge of FPLINE (STB). The parameter is selected as follows. For all other panel interfaces it has no effect.

Table 8-30: VCLK Setup

REG[4Ch] bits 1-0	VCLK Setup (in PCLKs)
00	7
01	9
10	12
11	16

	Casio TFT Timing RegisterREG[C0h]Default = 09180E09hRead/Write														
n/	n/a GPCK Rising Edge to STH Pulse bits 5-0						n/a	GRES Falling Edge to FRP Toggle Point bits 6-0							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/	n/a GRES Falling Edge to GPCK Rising Edge bits 4-0						n/a GPCK Rising Edge to GRES Rising Edge bits 5-0								
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
bits 29-	oits 29-24 GPCK Rising Edge to STH Pulse Bits[5:0]														

	n/	′a	GRES Falling	Edge to G	PCK Risin	g Edge bit	s 4-0	n	/a	GPCK Rising Edge to GRES Rising Edge bits 5-0						
	15	14	13 12	11	10	9	8	7	6	5	4	3	2	1	0	
	bits 29-	-24		CK Risi				_	-	m GPC	K risin	g edge	to STH	pulse.		
	oits 22-16 GRES Falling Edge to FRP Toggle Point Bits[6:0] These bits determine the number of PCLKs from GRES falling edge to FRP Toggle point.											e point.				
	bits 13-	-8	GRES Falling Edge to GPCK Rising Edge Bits[5:0] These bits determine the number of PCLKs from GRES falling edge to GPCK rising									g edge.				
bits 5-0 GPCK Rising Edge to GRES Rising Edge Bits[5:0] These bits determine the number of PCLKs from G									K risin	g edge	to GRE	S rising	g edge.			

Type :	Type 3 TFT Configuration Register 0																		
REG[D8h] Default = 00000000h															Read/	Write			
	POL Toggle Position bits 7-0										OE Pulse Width bits 7-0								
31	30	29	28	27	26		25	24	23	22	21	20	19	18	17	16			
	OE Rising Edge Position bits 7-0									n/a									
15	14	13	12	11	10		9	8	7	6	5	4	3	2	1	0			

bits 31-24 POL Toggle Position Bits [7:0]

These bits specify the toggle position of the POL signal in 2 pixel resolution. The S1D13A05 GPIO2 pin controls the POL signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

POL Toggle Position in pixels = (REG[D8h] bits 31-24) × 2

bits 23-16 OE Pulse Width Bits [7:0]

These bits specify the pulse width of the OE signal in 2 pixel resolution. The S1D13A05 GPIO1 pin controls the OE signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

OE Pulse Width in pixels = $(REG[D8h] bits 23-16) \times 2$

bits 15-8 OE Rising Edge Position Bits [7:0]

These bits specify the rising edge position of the OE signal in 2 pixel resolution. The S1D13A05 GPIO1 pin controls the OE signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

OE Rising Edge Position in pixels = $(REG[D8h] bits 15-8) \times 2$

Type 3	Type 3 TFT Configuration Register 1															
REG[[DCh]	_	Defau	IIt = 000	000000	h							Read/	Write		
		XO	EV End P	osition bits	7- 0		XOEV Start Position bits 7-0									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	CPV Pulse Width bits 6-0									VCOM Toggle Position bits 7-0						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

bits 31-24 XOEV End Position Bits [7:0]

These bits specify the falling/rising edge position of the XOEV signal in 2 pixel resolution (depending on the FPFRAME Pulse Polarity bit in REG[3Ch] bit 23). The S1D13A05 GPO2 pin controls the XOEV signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

XOEV Falling Edge Position in pixels = (REG[DCh] bits 31-24) $\times 2$

Note

If this register is set to 0, no pulse is generated.

bits 23-16 XOEV Start Position Bits [7:0]

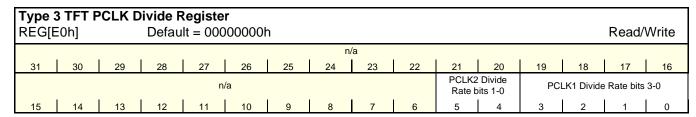
These bits specify the rising/falling edge position of the XOEV signal in 2 pixel resolution (depending on the FPFRAME Pulse Polarity bit in REG[3Ch] bit 23). The S1D13A05 GPO2 pin controls the XOEV signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

XOEV Rising Edge Position in pixels = (REG[DCh] bits 23-16) \times 2

Note

If this register is set to 0, no pulse is generated.

bits 15-8 CPV Pulse Width Bits [7:0]


These bits specify the pulse width of the CPV signal in 2 pixel resolution. The S1D13A05 GPIO0 pin controls the CPV signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

CPV Pulse Width in pixels = $(REG[DCh] bits 15-8) \times 2$

bits 7-0 VCOM Toggle Position Bits [7:0]

These bits specify the toggle position of the VCOM signal in 2 pixel resolution. The S1D13A05 GPO1 pin controls the VCOM signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

VCOM Toggle Position in pixels = $(REG[DCh] bits 7-0) \times 2$

bit 5-4

PCLK2 Divide Rate Bits [1:0]

These bits specify the divide rate for PCLK2. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

Table 8-31: PCLK2 Divide Rate

REG[C8h] bits 5-4	PCLK2 Divide Rate
00	64
01	128
10	256
11	512

bits 3-0

PCLK1 Divide Rate Bits [3:0]

These bits specify the divide rate for PCLK1. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

Table 8-32: PCLK1 Divide Rate

REG[C8h] bits 3-0	PCLK1 Divide Rate
0000	2
0001	4
0010	8
0011	16
0100	32
0101	64
0110	128
0111	256
1000	512
1001	1024
1010	2048
1011	4096
1100	8192
1101	16384
1110	32768
1111	65536

Type 3	Type 3 TFT Partial Mode Display Area Control Register														
REG[E	REG[E4h] Default = 00000000h												Read/Write		
	n/a														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/	/a	Р	artial Mod	e Display I	Refresh C	ycle bits 5-	0		n/a		Partial Mode Display Enable	Partial Mode Display Type Select	Area 2 Display Enable	Area 1 Display Enable	Area 0 Display Enable
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 13-8 Partial Mode Display Refresh Cycle Bits [5:0]

> These bits specify the refresh cycle for the Partial Mode Display. The refresh cycle can be a value from 0 to 63. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

bit 4 Partial Mode Display Enable

This bit enables/disables the Partial Mode Display for the TFT Type 3 and has no effect

for all other panel interfaces.

When this bit = 1, Partial Mode Display is enabled. When this bit = 0, Partial Mode Display is disabled.

bit 3 Partial Mode Display Type Select

This bit selects the type of partial mode display.

When this bit =0, the Stripe type of partial mode display is selected. If Stripe is enabled only the Y Position registers are used in calculating the partial display.

When this bit = 1, type Block type of partial mode display is selected. If Block is enabled both the X and Y Position registers are used in calculating the partial display.

bit 2 Area 2 Display Enable

> This bit enables/disables the Area 2 for Partial Mode Display on the TFT Type 3 and has no effect for all other panel interfaces.

When this bit = 1, Area 2 is enabled. When this bit = 0. Area 2 is disabled.

bit 1 Area 1 Display Enable

This bit enables/disables the Area 1 for Partial Mode Display on the TFT Type 3 and has

no effect for all other panel interfaces. When this bit = 1, Area 1 is enabled. When this bit = 0. Area 1 is disabled.

bit 0 Area 0 Display Enable

This bit enables/disables the Area 0 for Partial Mode Display on the TFT Type 3 and has

no effect for all other panel interfaces. When this bit = 1, Area 0 is enabled. When this bit = 0, Area 0 is disabled.

Type 3 TFT F REG[E8h]	Partial Area 0 Positions Register Default = 00000000h		Read/Write			
n/a	Partial Area 0 Y End Position bits 5-0	n/a Partial Area 0 X End Position bits 5-0				
31 30	29 28 27 26 25 24	23 22	21 20 19 18 17 16			
n/a	Partial Area 0 Y Start Position bits 5-0	n/a	Partial Area 0 X Start Position bits 5-0			
15 14	13 12 11 10 9 8	7 6	5 4 3 2 1 0			

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	bits 29-	-24		The		specify	the Y E	End Pos	sition of	f Partial					_	ister is
1	bits 21-	-16		The		specify	the X I	End Pos	sition o	f Partial d has no		•				_
1	bits 13-	-8		The		specify	the Y S	tart Po	sition o] f Partial as no e					U	ister is
1	bits 5-()		The		specify	the X S	Start Po	sition o] of Partia d has no						_

Type 3 TFT P REG[ECh]														
n/a	n/a Partial Area 1 Y End Position bits 5-0						Partial Area 1 X End Position bits 5-0							
31 30	29 28	27 26	25	24	23	22	21	20	19	18	17	16		
n/a	Partial Area	a 1 Y Start Position	n bits 5-0		n,	/a		Partial A	rea 1 X Sta	art Position	n bits 5-0			
15 14	13 12	11 10	9	8	7	6	5	4	3	2	1	0		

L	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	n	/a		Partial A	rea 1 Y St	art Positio	n bits 5-0		n	/a		Partial A	rea 1 X St	art Positio	n bits 5-0	
Į	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	oits 29	-24		The	se bits	specify		End Pos	ition of	Partial	Area 1				This reg	ister is
1	oits 21	-16		The	se bits	specify		End Pos	sition of	f Partia		-			. This re	_
1	oits 13	-8		The	se bits	specify		tart Pos	sition o	f Partia	l Area 1				Γhis reg	ister is
1	oits 5-()		The	se bits	specify		Start Po	sition o	f Partia					. This reerfaces.	U

Type : REG[F	3 TFT F =0h]	Partial A			ons Reg	-								Read/	Write
n/a Partial Area 2 Y End Position bits 5-0								n	/a		Partial A	rea 2 X Eı	nd Positior	bits 5-0	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n	n/a Partial Area 2 Y Start Position bits 5-0								/a		Partial A	rea 2 X St	art Position	n bits 5-0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Partial Area 2 Y End Position Bits [5:0]
These bits specify the Y End Position of Partial Area 2 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

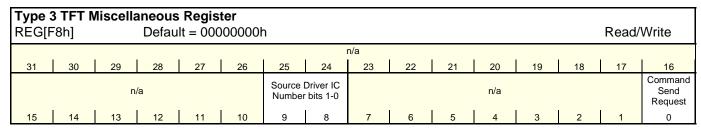
bits 21-16
Partial Area 2 X End Position Bits [5:0]
These bits specify the X End Position of Partial Area 2 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

bits 13-8
Partial Area 2 Y Start Position Bits [5:0]

These bits specify the Y Start Position of Partial Area 2 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

bits 5-0 Partial Area 2 X Start Position Bits [5:0]

These bits specify the X Start Position of Partial Area 2 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.


Type 3 REG[F	3 TFT C -4h]	omma		re Reg lt = 000		h									Read	/Write
	n/	/a							Co	mmand 1 S	Store bits 1	1-0				
31	30	29	28	27	26	25	24		23	22	21	20	19	18	17	16
	n/a								Co	mmand 0 S	Store bits 1	1-0				
15	14	13	12	11	10	9	8	1	7	6	5	4	3	2	1	0

bits 27-16 Command 1 Store Bits [11:0]

These bits store command 1 for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

bits 11-0 Command 0 Store Bits [11:0]

These bits store command 0 for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

bits 9-8

Source Driver IC Number Bits [1:0]

These bits contain the number of Source Driver ICs.

Table 8-33: Number of Source Driver ICs

REG[E0h] bits 1-0	Source Driver ICs
00	1
01	2
10	3
11	4

bit 0

Command Send Request

After the CPU sets this bit, the S1D13A05 sends the command in the next non-display period and clears this bit automatically. This register has no effect for all other panel interfaces.

8.4 USB Registers (Offset = 4000h)

The S1D13A05 USB device occupies a 48 byte local register space which can be accessed by the CPU on the local host interface.

To access the USB registers:

- 1. A valid USBCLK must be provided.
- 2. The USBClk Enable bit (REG[4000h] bit 7) must be set to 1 and the USB Setup bit (REG[4000h] bit 2) must be set to 1. Both bits should be set together.

If any of the above conditions are not true, the USB registers must not be accessed.

Control RegisterREG[4000h]Default = 00hRead/Write												
	n/a											
15	14	13	12	11	10	9	8					
USBClk Enable	Software EOT	USB Enable	Endpoint 4 Stall	Endpoint 3 Stall	USB Setup	Reserved	Reserved					
7	6	5	4	3	2	1	0					

bit 7

USBClk Enable.

This bit allows the USBClk to be enabled/disabled allowing the S1D13A05 to save power when the USBClk is not required. The USBClk Enable bit operates independently of the Power Save Mode Enable bit (REG[14h] bit 4). For example, enabling power save mode does not disable the USB section of the S1D13A05. It must be disabled using the USBClk enable bit.

This bit should initially be set with the USB Setup bit. However, it can be disabled/reenabled individually.

When this bit = 1, the USBClk is enabled.

When this bit = 0, the USBClk is disabled.

Note

The USB Registers must not be accessed when this bit is 0.

bit 6 Software EOT

This bit determines the response to an IN request to Endpoint 4 when the transmit FIFO is empty. If this bit is asserted, the S1D13A05 responds to an IN request to Endpoint 4 with an ACK and a zero length packet if the FIFO is empty. If this bit is not asserted, the S1D13A05 responds to an IN request from Endpoint 4 with an NAK if the FIFO is empty, indicating that it expects to transmit more data. This bit is automatically cleared when the S1D13A05 responds to the host with a zero length packet when the FIFO is empty.

bit 5 USB Enable

Any device or configuration descriptor reads from the host will be acknowledged with a NAK until this bit is set. This allows time for the local CPU to set up the interrupt polling register, maximum packet size registers, and other configuration registers (e.g. Product ID and Vendor ID) before the host reads the descriptors.

Note

As the device and configuration descriptors cannot be read by the host until the USB Enable bit is set, the device enumeration process will not complete and the device will not be recognized on the USB.

bit 4 Endpoint 4 Stall.

If this bit is set, host bulk reads from the transmit FIFO will result in a STALL acknowledge by the S1D13A05. No data will be returned to the USB host.

bit 3 Endpoint 3 Stall.

If this bit is set, host bulk writes to the receive FIFO will result in a STALL acknowledge by the S1D13A05. Receive data will be discarded.

bit 2 USB Setup

This bit is used by software to select between GPIO and USB functions for multifunction GPIO pins (GPIO[7:4]). This bit should be set at the same time as the USBClk Enable bit.

When this bit = 1, the USB function is selected. When this bit = 0, the GPIO function is selected.

Note

The USB Registers must not be accessed when this bit is 0.

bit 1 Reserved.

This bit must be set to 0.

bit 0 Reserved.

This bit must be set to 0.

Interrupt Enable Register 0 REG[4002h] Default = 00h Read/Write											
			n	/a							
15	14	13	12	11	10	9	8				
Suspend Request Interrupt Enable	SOF Interrupt Enable	Reserved	Endpoint 4 Interrupt Enable	Endpoint 3 Interrupt Enable	Endpoint 2 Interrupt Enable	Endpoint 1 Interrupt Enable	n/a				
7	6	5	4	3	2	1	0				

bit 7 Suspend Request Interrupt Enable.

When set, this bit enables an interrupt to occur when the USB host is requesting the

S1D13A05 USB device to enter suspend mode.

bit 6 SOF Interrupt Enable.

When set, this bit enables an interrupt to occur when a start-of-frame packet is received by

the S1D13A05.

bit 5 Reserved.

This bit must be set to 0.

bit 4	Endpoint 4 Interrupt Enable. When set, this bit enables an interrupt to occur when a USB Endpoint 4 Data Packet has been sent by the S1D13A05.
bit 3	Endpoint 3 Interrupt Enable. When set, this bit enables an interrupt to occur when a USB Endpoint 3 Data Packet has been received by the S1D13A05.
bit 2	Endpoint 2 Interrupt Enable. When set, this bit enables an interrupt to occur when the USB Endpoint 2 Transmit Mailbox registers have been read by the USB host.
bit 1	Endpoint 1 Interrupt Enable. When set, this bit enables an interrupt to occur when the USB Endpoint 1 Receive Mailbox registers have been written to by the USB host.

Interrupt Status Register 0 REG[4004h] Default = 00h Re											
			n,	/a							
15	14	13	12	11	10	9	8				
Suspend Request Interrupt Status	SOF Interrupt Status	Reserved	Endpoint 4 Interrupt Status	Endpoint 3 Interrupt Status	Endpoint 2 Interrupt Status	Endpoint 1 Interrupt Status	Upper Interrupt Active (read only)				
7	6	5	4	3	2	1	0				

/	6	5	4	3	2	1	0
bit 7	Thi	s bit indicates the lears this bit.	_		peen received	by the S1D132	A05. Writing a
bit 6	Thi	F Interrupt States bit indicates a 1 clears this	when a start-o	f-frame packet	has been recei	ived by the S1	D13A05. Writ-
bit 5		served. s bit must be so	et to 0.				
bit 4	Thi	dpoint 4 Interrus bit indicates titing a 1 clears	when a USB E	Endpoint 4 Data	a packet has be	een sent by the	e S1D13A05.
bit 3	Thi S1I	lpoint 3 Interrus bit indicates of 13A05. No man 1 clears this	when a USB E ore packets to	Endpoint 3 Data	a packet has be		y the cleared. Writ-
bit 2	Thi	dpoint 2 Interrus s bit indicates t. Writing a 1 c	when the USB	Endpoint 2 M	ailbox register	s have been re	ad by the USB
bit 1	Thi	lpoint 1 Interrus bit indicates bit indicates B host. Writing	when the USB	Endpoint 1 M		s have been w	ritten to by the
bit 0		per Interrupt A least one interr		-	· REG[4008h].		

Interrupt Ena	Interrupt Enable Register 1										
REG[4006h] Default = 00h								Read/Write			
n/a											
15	14	13	12	11		10	9	8			
		Transmit FIFO Almost Empty Interrupt Enable	Receive FIFO Almost Full Interrupt Enable								
7	6	5	4	3		2	1	0			

bit 1

Transmit FIFO Almost Empty Interrupt Enable.

When set, this bit enables an interrupt to be generated when the Transmit FIFO Almost Empty status bit is set.

Note

The Transmit FIFO Almost Empty threshold must be set greater than zero, as the FIFO count must drop below the threshold to cause an interrupt.

bit 0

Receive FIFO Almost Full Interrupt Enable.

When set, this bit enables an interrupt to be generated when the Receive FIFO Almost Full status bit is set.

Note

The Receive FIFO Almost Full threshold must be set less than 64, as the FIFO count must rise above the threshold to cause an interrupt.

Interrupt Status Register 1 REG[4008h] Default = 00h R											
n/a											
15	14	13		12	1	1	10	9	8		
								Transmit FIFO Almost Empty Status	Receive FIFO Almost Full Status		
7	6	5		4] 3	3	2	1	0		

bit 1

Transmit FIFO Almost Empty Status.

This bit is set when the number of bytes in the Transmit FIFO is equal to the Transmit FIFO Almost Empty Threshold, and another byte is sent to the USB bus from the FIFO. Writing a 1 clears this bit.

bit 0

Receive FIFO Almost Full Status.

This bit is set when the number of bytes in the Receive FIFO is equal to the Receive FIFO Almost Full Threshold, and another byte is received from the USB bus into the FIFO. Writing a 1 clears this bit.

Endpoint 1 Index Register REG[4010h] Default = 00h Read/Write										
REG[4010h]		Read/Write								
n/a										
15	14	13	12	11	10	9	8			
n/a Endpoint 1 Index bits 2-0 (RO)							(RO)			
7	6	5	4	3	2	1	0			

bits 2-0

Endpoint 1 Index Register Bits [2:0].

This register determines which Endpoint 1 Receive Mailbox is accessed when the Endpoint 1 Receive Mailbox Data register is read. This register is automatically incremented after the Endpoint 1 Receive Mailbox Data register is read. This index register wraps around to zero when it reaches the maximum count (7).

Endpoint 1 Receive Mailbox Data Register											
REG[4012h] Default = 00h											
n/a											
15	14	13	12	11	10	9	8				
	Endpoint 1 Receive Mailbox Data bits 7-0										
7	6	5	4	3	2	1	0				

bits 7-0

Endpoint 1 Receive Mailbox Data Bits [7:0].

This register is used to read data from one of the receive mailbox registers. Data is returned from the register selected by the Endpoint 1 Index Register. The eight receive mailbox registers are written by a USB bulk transfer to endpoint 1, and can be used to pass messages from the USB host to the local CPU. The format and content of the messages are user defined. If enabled, USB writes to this register can generate an interrupt.

Endpoint 2 Index Register											
REG[4018h] Default = 00h Read/Write											
n/a											
15	14	13	12	11	10	9	8				
	n/a Endpoint 2 Index bits 2-0										
7	6	5	4	3	2	1	0				

bits 2-0

Endpoint 2 Index Register Bits [2:0].

This register determines which Endpoint 2 Transmit Mailbox is accessed when the Endpoint 2 Transmit Mailbox Data register is read or written. This register is automatically incremented after the Endpoint 2 Transmit Mailbox Data port is read or written. This index register wraps around to zero when it reaches the maximum count (7).

Endpoint 2 T	Endpoint 2 Transmit Mailbox Data Register											
REG[401Ah]	Defa	ult = 00h					Read/Write					
	n/a											
15	14	13	12	11	10	9	8					
	Endpoint 2 Transmit Mailbox Data bits 7-0											
7	6	5	4	3	2	1	0					

bits 7-0

Endpoint 2 Transmit Mailbox Data Bits [7:0].

This register is used to read or write one of the transmit mailbox registers. The register being accessed is selected by the Endpoint 2 Index register. The eight Transmit Mailbox registers are written by the local CPU and are read by a USB transfer from endpoint 2. The format and content of the messages are user defined. If enabled, USB reads from this register can generate an interrupt.

Endpoint 2 Interrupt Polling Interval Register											
REG[401Ch]	Read/Write										
n/a											
15	14	13	12	11	10	9	8				
Interrupt Polling Interval bits 7-0											
7	6	5	4	3	2	1	0				

bits 7-0

Interrupt Polling Interval Bits [7:0].

This register specifies the Endpoint 2 interrupt polling interval in milliseconds. It can be read by the host through the endpoint 2 descriptor.

	Endpoint 3 Receive FIFO Data Register											
REG[4020h]	Defa	ult = 00h					Read Only					
n/a												
15	14	13	12	11	10	9	8					
	Endpoint 3 Receive FIFO Data bits 7-0											
7	6	5	4	3	2	1	0					

bits7-0

Endpoint 3 Receive FIFO Data Bits [7:0].

This register is used by the local CPU to read USB receive FIFO data. The FIFO data is written by the USB host using bulk or isochronous transfers to endpoint 3.

Endpoint 3 R REG[4022h]	Endpoint 3 Receive FIFO Count Register REG[4022h] Default = 00h Read Only										
	n/a										
15	14	13	12	11	10	9	8				
	Receive FIFO Count bits 7-0										
7	6	5	4	3	2	1	0				

bits 7-0

Receive FIFO Count Bits [7:0].

This register returns the number of receive FIFO entries containing valid entries. Values range from 0 (empty) to 64 (full). This register is automatically decremented after every read of the of the Receive FIFO Data Register (REG[4020h]).

Endpoint 3 Receive FIFO Status Register REG[4024h] Default = 01h Read/Wri										
n/a										
15	14	13	12	11	10	9	8			
	n/a		Receive FIFO Flush	Receive FIFO Overflow	Receive FIFO Underflow	Receive FIFO Full (read only)	Receive FIFO Empty (read only)			
7	6	5	4	3	2	1	0			

bit 4 Receive FIFO Flush. Writing to this bit causes the receive FIFO to be flushed. Reading this bit always returns a bit 3 Receive FIFO Overflow. If set, this bit indicates that an attempt was made by the USB host to write to the receive FIFO when the receive FIFO was full. Writing a 1 clears this bit. Receive FIFO Underflow. bit 2 If set, this bit indicates that an attempt was made to read the receive FIFO when the receive FIFO was empty. Writing a 1 clears this bit. bit 1 Receive FIFO Full. If set, this bit indicates that the receive FIFO is full. bit 0 Receive FIFO Empty.

Endpoint 3 Max	kimum Packet Size Register	
REG[4026h]	Default = 08h	Read/Write

If set, this bit indicates that the receive FIFO is empty.

L												
Ī	n/a											
L	15	14	13	12	11	10	9	8				
T	Endpoint 3 Max Packet Size bits 7-0											
l	7	6	5	4	3	2	1	0				

bits 7-0 Endpoint 3 Max Packet Size Bits [7:0].

This register specifies the maximum packet size for endpoint 3 in units of 8 bytes (default = 64 bytes). It can be read by the host through the endpoint 3 descriptor.

Endpoint 4 T REG[4028h]	Endpoint 4 Transmit FIFO Data RegisterREG[4028h]Default = 00hWrite Only										
n/a											
15	14	13	12	11	10	9	8				
Transmit FIFO Data bits 7-0											
7	6	5	4	3	2	1	0				

bits 7-0 Transmit FIFO Data Bits [7:0].

This register is used by the local CPU to write data to the transmit FIFO. The FIFO data is read by the USB host using bulk or isochronous transfers from endpoint 4.

Ī	Endpoint 4 T	ransmit FIFO	Count Regist	ter						
	REG[402Ah]	Defau	lt = 00h					Read Only		
Î				n	/a					
	15	14	13	12	11	10	9	8		
Ī	Transmit FIFO Count bits 7-0									
l	7	6	5	4	3	2	1	0		

bits 7-0 Transmit FIFO Count Bits [7:0].

This register returns the number of transmit FIFO entries containing valid entries. Values range from 0 (empty) to 64 (full).

Endpoint 4 T REG[402Ch]	Endpoint 4 Transmit FIFO Status Register REG[402Ch] Default = 01h Read/Write										
	n/a										
15	14	13	12	11	10	9	8				
n,	/a	Transmit FIFO Valid	Transmit FIFO Flush	Transmit FIFO Overflow	Reserved	Transmit FIFO Full (read only)	Transmit FIFO Empty (read only)				
7	6	5	4	3	2	1	0				

bit 5 Transmit FIFO Valid.

If set, this bit allows the data in the Transmit FIFO to be read by the next read from the host. This bit is automatically cleared by a host read. This bit is only used if bit 0 in USB[403Ah] Index [0Ch] is set.

bit 4 Transmit FIFO Flush.

Writing to this bit causes the transmit FIFO to be flushed. Reading this bit always returns a 0.

bit 3 Transmit FIFO Overflow.

If set, this bit indicates that an attempt was made by the local CPU to write to the transmit FIFO when the transmit FIFO was full. Writing a 1 clears this bit.

bit 2 Reserved.

bit 1 Transmit FIFO Full (read only).

If set, this bit indicates that the transmit FIFO is full.

bit 0 Transmit FIFO Empty (read only).

If set, this bit indicates that the transmit FIFO is empty.

Endpoint 4 N REG[402Eh]	Endpoint 4 Maximum Packet Size Register REG[402Eh] Default = 08h Read/Write										
			n	ı/a							
15	14	13	12	11	10	9	8				
		•	Endpoint 4 Max P	acket Size bits 7-0	<u> </u>						
7	6	5	4	3	2	1	0				

bits 7-0 Endpoint 4 Max Packet Size Bits [7:0].

This register specifies the maximum packet size for endpoint 4 in units of 8 bytes (default = 64 bytes). It can be read by the host through the endpoint 4 descriptor.

Revision Reg REG[4030h]	Revision RegisterREG[4030h]Default = 01hRead Only										
	n/a										
15	14	13	12	11	10	9	8				
Chip Revision bits 7-0											
7	6	5	4	3	2	1	0				

bits 7-0 Chip Revision Bits [7:0].

This register returns current silicon revision number of the USB client.

USB Status I	Register									
REG[4032h]	REG[4032h] Default = 00h									
			n.	/a						
15	14	13	12	11	10	9	8			
Suspend Control	USB Endpoint 4 STALL	USB Endpoint 4 NAK	USB Endpoint 4 ACK	USB Endpoint 3 STALL	USB Endpoint 3 NAK	USB Endpoint 3 ACK	Endpoint 2 Valid			
7	6	5	4	3	2	1	0			
bit 7										
bit 6 USB Endpoint 4 STALL The last USB IN token could not be serviced because the endpoint was stalled (REGI4000hl bit 4 set), and was acknowledged with a STALL Writing a 1 clears this light.										

(REG[4000h] bit 4 set), and was acknowledged with a STALL. Writing a 1 clears this bit.

bit 5 USB Endpoint 4 NAK The last USB packet transmitted (IN packet) encountered a FIFO underrun condition, and

was acknowledged with a NAK. Writing a 1 clears this bit. USB Endpoint 4 ACK

The last USB packet transmitted (IN packet) was successfully acknowledged with an ACK from the USB host. Writing a 1 clears this bit.

bit 3 **USB Endpoint 3 STALL** The last USB packet received (OUT packet) could not be accepted because the endpoint was stalled (REG[4000h] bit 3 set), and was acknowledged with a STALL. Writing a 1 clears this bit.

> USB Endpoint 3 NAK The last USB packet received (OUT packet) could not be accepted, and was acknowledged with a NAK. Writing a 1 clears this bit.

USB Endpoint 3 ACK. The last USB packet received (OUT packet) was successfully acknowledged with an

ACK. Writing a 1 clears this bit.

Endpoint 2 Valid. When this bit is set, the 8-byte endpoint 2 mailbox registers have been written by the local CPU, but not yet read by the USB host. The local CPU should not write into these registers while this bit is set.

bit 4

bit 2

bit 1

bit 0

Frame Coun REG[4034h]	Frame Counter MSB Register REG[4034h] Default = 00h Read Only									
	n/a									
15	14	13	12	11	10	9	8			
	n/a Frame Counter bits 10-8									
7	6	5	4	3	2	1	0			

Frame Count REG[4036h]	Frame Counter LSB Register REG[4036h] Default = 00h Read Only										
n/a											
15	14	13	12	11	10	9	8				
	Frame Counter bits 7-0										
7	6	5	4	3	2	1	0				

bits 10-0 Frame Counter Bits [10:0]

This register contains the frame counter from the most recent start-of-frame packet.

Extended Re	gister Index								
REG[4038h] Default = 00h									
	n/a								
15	14	13	12	11	10	9	8		
Extended Register Index bits 7-0									
7	6	5	4	3	2	1	0		

bits 7-0 Extended Register Index Bits [7:0]

This register selects which extended data register is accessed when the REG[403Ah] is read or written.

Extended Register Data REG[403Ah] Default = 04h Read/Write										
n/a 15 14 13 12 11 10 9							8			
Extended Data bits 7-0										
7	6	5	4	3	2	1	0			

bits 7-0 Extended Data Bits [7:0]

This port provides access to one of the extended data registers. The index of the current register is held in REG[4038h].

Vendor ID MSBREG[403Ah], Index[00h]Default = 04hRead/Write								
7	6	5	Vendor I	D bits 15-8	2	l 1	1 0	

Vendor ID L	Vendor ID LSB									
REG[403Ah], Index[01h] Default = B8h										
	Vendor ID bits 7-0									
7	6	5	4	3	2	1	0			

bits 15-0 Vendor ID Bits [15:0]

These registers determine the Vendor ID returned in a "Get Device Descriptor" request.

	Product ID MSB REG[403Ah], Index[02h] Default = 88h Read/Write													
	Product ID bits 15-8													
7		6		5		4		3		2		1		0

Product ID	Product ID LSB										
REG[403Ah], Index[03h] Default = 21h Read/Wr											
	Product ID bits 7-0										
7	6	5	4	3	2	1	0				

bits 15-0 Product ID Bits [15:0]

These registers determine the Product ID returned in a "Get Device Descriptor" request.

Release Nui	Release Number MSB									
REG[403Ah]	REG[403Ah], Index[04h] Default = 01h									
	Release Number bits 15-8									
7	6	5	4	3	2	1	0			

Release Number LSB REG[403Ah], Index[05h] Default = 00h Read/Write										
	Release Number bits 7-0									
7	6	5	4	3	2	1	0			

bits 15-0

Release Number Bits [15:0]

These registers determine the device release number returned in a "Get Device Descriptor" request.

Receive FIFO Almost Full Threshold									
REG[403Ah], Index[06h] Default = 3Ch Read/Write									
n	/a			Receive FIFO Aln	nost Full Threshold bits	5-0			
7	6	5	0						

bits 5-0

Receive FIFO Almost Full Threshold Bits [5:0]

This register determines the threshold at which the receive FIFO almost full status bit is set.

Note

The Receive FIFO Almost Full threshold must be set less than 64, as the FIFO count must rise above the threshold to cause an interrupt.

Transmit FIFO Almost Empty Threshold										
REG[403Ah],	Index[07h]	Default	t = 04h				Read/Write			
n/a				ansmit FIFO Almost E	mpty Threshold bi	ts 5-0				
7	6	5	4	3	2	1	0			

bits 5-0

Transmit FIFO Almost Empty Threshold Bits [5:0].

This register determines the threshold at which the transmit FIFO almost empty status bit is set.

Note

The Transmit FIFO Almost Empty threshold must be set greater than zero, as the FIFO count must drop below the threshold to cause an interrupt.

USB Control REG[403Ah],		Default	= 01h				Read/Write
		n/a				USB String Enable	
7	6	5	4	3	2	1	0

bit 0

USB String Enable.

When set, this bit allows the default Vendor and Product ID String Descriptors to be returned to the host. When this bit is cleared, the string index values in the Device Descriptor are set to zero.

Maximum Power Consumption										
REG[403Ah], Index[09h] Default = FAh Read/Write										
	Maximum Current bits 7-0									
7 6 5 4 3 2 1										

bits 7-0

Maximum Current Bits [7:0].

The amount of current drawn by the peripheral from the USB port in increments of 2 mA. The S1D13A05 reports this value to the host controller in the configuration descriptor. The default and maximum value is 500 mA (FAh * 2 mA).

In order to comply with the USB specification the following formula must apply: REG[403Ah] index $[09h] \le FAh$.

Packet Conti	Packet Control										
REG[403Ah],	Index[0Ah]	Default :	= 00h				Read/Write				
EP4 Data Toggle	EP3 Data Toggle	EP2 Data Toggle	EP1 Data Toggle	Reserved	Reserved	n/a	Reserved				
7	6	5	4	3	2	1	0				

bit 7

EP4 Data Toggle Bit.

Contains the value of the Data Toggle bit to be sent in response to the next IN token to endpoint 4 from the USB host.

Note

When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK.

bit 6

EP3 Data Toggle Bit.

Contains the value of the Data Toggle bit expected in the next DATA packet to endpoint 3 from the USB host.

Note

When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK.

bit 5

EP2 Data Toggle Bit.

Contains the value of the Data Toggle bit to be sent in response to the next IN token to endpoint 2 from the USB host.

Note

When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK.

bit 4 EP1 Data Toggle Bit.

Contains the value of the Data Toggle bit expected in the next DATA packet to endpoint 1 from the USB host.

Note

When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK.

bit 3 Reserved.

This bit must be set to 0.

bit 2 Reserved.

This bit must be set to 0.

bit 0 Reserved.

This bit must be set to 0.

Reserved	Reserved									
REG[403Ah],	REG[403Ah], Index[0Bh] Default = 00h						Read/Write			
	n/a									
7	6	5	4	3	2	1	0			

bit 0 Reserved.

This bit must be set to 0.

FIFO Contro	FIFO Control									
REG[403Ah],	EG[403Ah], Index[0Ch] Default = 00h									
	n/a									
7	6	5	4	3	2	1	0			

bit 0 Transmit FIFO Valid Mode.

When set, this bit causes a NAK response to a host read request from the transmit FIFO (EP4) unless the FIFO Valid bit (in register EP4STAT) is set. When this bit is cleared, any data waiting in the transmit FIFO will be sent in response to a host read request, and the FIFO Valid bit is ignored.

USBFC Input	USBFC Input Control Register										
REG[4040h] Default = 0Dh											
	n/a										
15	14	13	12	11	10	9	8				
n/a	USCMPEN	Reserved	Reserved	ISO	WAKEUP	Reserved	Reserved				
7	6	5	4	3	2	1	0				

These bits control inputs to the USB module.

bit 6 USCMPEN

This bit controls the USB differential input receiver.

0 = differential input receiver disabled 1 = differential input receiver enabled

bits 5 Reserved.

This bit must be set to 0.

bits 4 Reserved.

This bit must be set to 0.

bit 3 ISO

This bits selects between isochronous and bulk transfer modes for the FIFOs (Endpoint 3

and Endpoint 4).

0 =Isochronous transfer mode

1 = Bulk transfer mode

bit 2 WAKEUP

This active low bit initiates a USB remote wake-up.

0 = initiate USB remote wake-up

1 = no action

bit 1 Reserved.

This bit must be set to 0.

bit 0 Reserved.

This bit must be set to 0.

Reserved REG[4042h]							
			n,	/a			
15	14	13	12	11	10	9	8
	_	_	n,	/a	_		
7	6	5	4	3	2	1	0

Pin Input Sta REG[4044h]	a tus / Pin Out p Defau	out Data Regis It = depends o		in state			Read/Write				
n/a											
15 14 13 12 11 10 9 8											
		n/	'a			USBDETECT Input Pin Status (read only)	USBPUP Output Pin Status				
7	6	5	4	3	2	1	0				

These bits can generate interrupts.

bit 1 USBDETECT Input Pin Status

This read-only bit indicates the status of the USBDETECT input pin after a steady-state

period of 0.5 seconds.

bit 0 USBPUP Output Pin Status

This bit controls the state of the USBPUP output pin.

This bit must be set to 1 to enable the USB interface and USB registers. See the S1D13A05 Programming Notes and Examples, document number X40-A-G-003-xx for further infor-

mation on this bit.

Interrupt Co REG[4046h]	ntrol Enable R Defau	Register 0 llt = 00h					Read/Write
			n	/a			
15	14	13	12	11	10	9	8
n/a	USB Host Connected	Reserved	Reserved	Reserved	Reserved	USBRESET	Reserved
7	6	5	4	3	2	1	0

These bits enable interrupts from the corresponding bit of the Interrupt Control Status/Clear Register 0.

0 = corresponding interrupt bit disabled (masked).

1 = corresponding interrupt bit enabled.

Interrupt Cor REG[4048h]	• •											
n/a												
15	14	13	12	11	10	9	8					
n/a	USB Host Disconnect	Reserved	Device Configured	Reserved	Reserved	Reserved	INT					
7	6	5	4	3	2	1	0					

These bits enable interrupts from the corresponding bit of the Interrupt Control Status/Clear Register 1.

0 = corresponding interrupt bit disabled (masked).

1 = corresponding interrupt bit enabled.

Interrupt Cor REG[404Ah]	ntrol Status/C Defau	lear Register lt = 00h	0				Read/Write				
n/a											
15	14	13	12	11	10	9	8				
n/a	USB Host Connected	Reserved	Reserved	Reserved	Reserved	USBRESET	Reserved				
7	6	5	4	3	2	1	0				

On reads, these bits represent the interrupt status for interrupts caused by low-to-high transitions on the corresponding signals.

0 (read) = no low-to-high event detected on the corresponding signal.

1 (read) = low-to-high event detected on the corresponding signal.

On writes, these bits clear the corresponding interrupt status bit.

0 (write) = corresponding interrupt status bit unchanged.

1 (write) = corresponding interrupt status bit cleared to zero.

These bits must always be cleared via a write to this register before first use. This will ensure that any changes on input pins during system initialization do not generate erroneous interrupts. The interrupt bits are used as follows.

bit 6	USB Host Connected

Indicates the USB device is connected to a USB host.

bit 5 Reserved.

Must be set to 0.

bit 4 Reserved.

Must be set to 0.

bit 3 Reserved.

Must be set to 0.

bit 2 Reserved.

Must be set to 0.

bit 1 USBRESET

Indicates the USB device is reset using the RESET# pin or using the USB port reset.

bit 0 Reserved.

Must be set to 0.

Interrupt Cor REG[404Ch]	Interrupt Control Status/Clear Register 1 REG[404Ch] Default = 00h Read/Write											
n/a												
15	14	13	12	11	10	9	8					
n/a	USB Host Disconnected	Reserved	Device Configured	Reserved	Reserved	Reserved	INT					
7	6	5	4	3	2	1	0					

On reads, these bits represent the interrupt status for interrupts caused by high-to-low transitions on the corresponding signals.

0 (read) = no high-to-low event detected on the corresponding signal.

1 (read) = high-to-low event detected on the corresponding signal.

On writes, these bits clear the corresponding interrupt status bit.

0 (write) = corresponding interrupt status bit unchanged.

1 (write) = corresponding interrupt status bit cleared to zero.

These bits must always be cleared via a write to this register before first use. This will ensure that any changes on input pins during system initialization do not generate erroneous interrupts. The interrupt bits are used as follows.

bit 6 USB Host Disconnected

Indicates the USB device is disconnected from a USB host.

bit 5 Reserved.

Must be set to 0.

bit 4 Device Configured.

Indicates the USB device has been configured by the USB host.

bit 3 Reserved.

Must be set to 0.

bit 2 Reserved.

Must be set to 0.

bit 1 Reserved.

Must be set to 0.

bit 0 INT

Indicates an interrupt request originating from within the USB registers (REG[4000h] to

REG[403Ah]).

Interrupt Cor REG[404Eh]	Interrupt Control Masked Status Register 0 REG[404Eh] Default = 00h Read Only											
	n/a											
15	14	13	12	11	10	9	8					
n/a	USB Host Connected	Reserved	Reserved	Reserved	Reserved	USBRESET	Reserved					
7	6	5	4	3	2	1	0					

These read-only bits represent the logical AND of the corresponding Interrupt Control Status/Clear Register 0 (REG[404Ah]) and the Interrupt Control Enable Register 0 (REG[4046h]).

Interrupt Control Masked Status Register 1 REG[4050h] Default = 00h Read Only												
n/a												
15	14	13	12	11	10	9	8					
n/a	USB Host Disconnected	Reserved	Device Configured	Reserved	Reserved	Reserved	INT					
7	6	5	4	3	2	1	0					

These read-only bits represent the logical AND of the corresponding Interrupt Control Status/Clear Register 1 (REG[404Ch]) and the Interrupt Control Enable Register 1 (REG[4048h]).

	USB Software Reset Register REG[4052h] Default = 00h Write Only												
• •													
n/a													
15	14	13	12	11	10	9	8						
	USB Software Reset (Code = 10100100) bits 7-0												
7	6	5	4	3	2	1	0						

bits 7-0

USB Software Reset Bits [7:0] (Write Only)

When the specific code of 10100100b is written to these bits the USB module of the S1D13A05 is reset. Use of the above code avoids the possibility of accidently resetting the USB.

USB Wait State Register REG[4054h] Default = 00h Read/Write										
n/a										
15	14	13	12	11	10	9	8			
n/a USB Wait State bit										
7	6	5	4	3	2	1	0			

bits 1-0

USB Wait State Bits [1:0]

This register controls the number of wait states the S1D13A05 uses for its internal USB support. For all bus interfaces supported by the S1D13A05 **these bits must be set to 01**.

8.5 2D Acceleration (BitBLT) Registers (Offset = 8000h)

These registers control the S1D13A05 2D Acceleration engine. For detailed BitBLT programming instructions, see the *S1D13A05 Programming Notes and Examples*, document number X40A-G-003-xx.

BitBL	T Co	ntro	ol Reç	gister														
REG[8000h	ո]		Defau	efault = 00000000h									Read/Write				
								n/a								Color Format Select	Dest Linear Select	Source Linear Select
31	30		29	28	27	26		25	24	- [23	22	21	20	19	18	17	16
									n/a	l								BitBLT Enable (WO)
15	14		13	12	11	10		9	8		7	6	5	4	3	2	1	0

bit 18 BitBLT Color Format Select

This bit selects the color format that the 2D operation is applied to.

When this bit = 0, 8 bpp (256 color) format is selected. When this bit = 1, 16 bpp (64K color) format is selected.

bit 17 BitBLT Destination Linear Select

When this bit = 1, the Destination BitBLT is stored as a contiguous linear block of

memory.

When this bit = 0, the Destination BitBLT is stored as a rectangular region of memory. The BitBLT Memory Address Offset register (REG[8014h]) determines the address offset

from the start of one line to the next line.

bit 16 BitBLT Source Linear Select

When this bit = 1, the Source BitBLT is stored as a contiguous linear block of memory.

When this bit = 0, the Source BitBLT is stored as a rectangular region of memory.

The BitBLT Memory Address Offset register (REG[8014h]) determines the address offset

from the start of one line to the next line.

bit 0 BitBLT Enable

This bit is write only.

Setting this bit to 1 begins the 2D BitBLT operation. This bit must not be set to 0 while a

BitBLT operation is in progress.

Note

To determine the status of a BitBLT operation use the BitBLT Busy Status bit (REG[8004h] bit 0).

BitBLT Status Register															
REG[8	3004h]		Defau	It = 000	00000l	า								Read (Only
	n/a			Number	of Used FIF	O Entries			n/a		Numb	per of Free	FIFO Ent	ries (0 mear	ns full)
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				n/a					FIFO Not Empty	FIFO Half Full	FIFO Full Status		n/a		BitBLT Busy Status
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 28-24 Number of Used FIFO Entries Bits [4:0]

These bits indicate the minimum number of FIFO entries currently in use (there may be more values in internal pipeline stages).

bits 20-16 Number of Free FIFO Entries Bits [4:0]

These bits indicate the number of empty FIFO entries available. If these bits return a 0, the FIFO is full.

bit 6 BitBLT FIFO Not-Empty Status

This is a read-only status bit.

When this bit = 0, the BitBLT FIFO is empty.

When this bit = 1, the BitBLT FiFO has at least one data.

To reduce system memory read latency, software can monitor this bit prior to a BitBLT read burst operation.

The following table shows the number of words available in BitBLT FIFO under different status conditions.

Table 8-34: BitBLT FIFO Words Available

BitBLT FIFO Full Status (REG[8004h] Bit 4)	BitBLT FIFO Half Full Status (REG[8004h] Bit 5)	BitBLT FIFO Not Empty Status (REG[8004h] Bit 6)	Number of Words available in BitBLT FIFO
0	0	0	0
0	0	1	1 to 6
0	1	1	7 to 14
1	1	1	15 to 16

bit 5 BitBLT FIFO Half Full Status

This is a read-only status bit.

When this bit = 1, the BitBLT FIFO is half full or greater than half full.

When this bit = 0, the BitBLT FIFO is less than half full.

bit 4 BitBLT FIFO Full Status

This is a read-only status bit.

When this bit = 1, the BitBLT FIFO is full. When this bit = 0, the BitBLT FIFO is not full. bit 0 BitBLT Busy Status

This bit is a read-only status bit.

When this bit = 1, the BitBLT operation is in progress.

When this bit = 0, the BitBLT operation is complete.

Note

During a BitBLT Read operation, the BitBLT engine does not attempt to keep the FIFO full. If the FIFO becomes full, the BitBLT operation stops temporarily as data is read out of the FIFO. The BitBLT will restart only when less than 14 values remain in the FIFO.

BitBLT Command Register REG[8008h] Default = 00000000h												Read/V	Vrite			
						n/a	1						Bi	tBLT ROP	Code bits 3	3-0
31	30	29	28	27	26		25	24	23	22	21	20	19	18	17	16
						n/a	ı						В	itBLT Ope	ration bits 3	-0
15	14	13	11	10		9	8	7	6	5	4	3	2	1	0	

bits 19-16

BitBLT Raster Operation Code/Color Expansion Bits [3:0]

ROP Code for Write BitBLT and Move BitBLT. Bits 2-0 also specify the start bit position for Color Expansion.

Table 8-35: BitBLT ROP Code/Color Expansion Function Selection
--

BitBLT ROP Code Bits [3:0]	Boolean Function for Write BitBLT and Move BitBLT	Boolean Function for Pattern Fill	Start Bit Position for Color Expansion
0000	0 (Blackness)	0 (Blackness)	bit 0
0001	~S . ~D or ~(S + D)	~P . ~D or ~(P + D)	bit 1
0010	~S . D	~P . D	bit 2
0011	~S	~P	bit 3
0100	S.~D	P.~D	bit 4
0101	~D	~D	bit 5
0110	S^D	P^D	bit 6
0111	~S + ~D or ~(S . D)	~P + ~D or ~(P . D)	bit 7
1000	S.D	P . D	bit 0
1001	~(S ^ D)	~(P ^ D)	bit 1
1010	D	D	bit 2
1011	~S + D	~P + D	bit 3
1100	S	Р	bit 4
1101	S + ~D	P + ~D	bit 5
1110	S + D	P + D	bit 6
1111	1 (Whiteness)	1 (Whiteness)	bit 7

Note

S = Source, D = Destination, P = Pattern.

~ = NOT, . = Logical AND, + = Logical OR, ^ = Logical XOR

bits 3-0 BitH

BitBLT Operation Bits [3:0]

Specifies the 2D Operation to be carried out based on the following table.

Table 8-36: BitBLT Operation Selection

BitBLT Operation Bits [3:0]	BitBLT Operation
0000	Write BitBLT with ROP.
0001	Read BitBLT.
0010	Move BitBLT in positive direction with ROP.
0011	Move BitBLT in negative direction with ROP.
0100	Transparent Write BitBLT.
0101	Transparent Move BitBLT in positive direction.
0110	Pattern Fill with ROP.
0111	Pattern Fill with transparency.
1000	Color Expansion.
1001	Color Expansion with transparency.
1010	Move BitBLT with Color Expansion.
1011	Move BitBLT with Color Expansion and transparency.
1100	Solid Fill.
Other combinations	Reserved

	T Sour 800Ch]	ce Star			gister 000000	h								Read/V	Vrite
					n/a						BitE	BLT Source	Start Add	dress bits 20	0-16
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						BitBLT S	Source Sta	rt Address	bits 15-0						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 20-0

BitBLT Source Start Address Bits [20:0]

A 21-bit register that specifies the source start address for the BitBLT operation. If data is sourced from the CPU, then bit 0 is used for byte alignment within a 16-bit word and the other address bits are ignored. In pattern fill operation, the BitBLT Source Start Address is defined by the following equation.

Value programmed to the Source Start Address Register = Pattern Base Address + Pattern Line Offset + Pixel Offset.

The following table shows how Source Start Address Register is defined for 8 and 16 bpp color depths.

Table 8-37: BitBLT Source Start Address Selection

Color Format	Pattern Base Address[20:0]	Pattern Line Offset[2:0]	Pixel Offset[3:0]
8 bpp	BitBLT Source Start Address[20:6]	BitBLT Source Start Address[5:3]	BitBLT Source Start Address[2:0]
16 bpp	BitBLT Source Start Address[20:7]	BitBLT Source Start Address[6:4]	BitBLT Source Start Address[3:0]

Note

For further information on the BitBLT Source Start Address register, see the *S1D13A05 Programming Notes and Examples*, document number X40A-G-003-xx.

	SitBLT Destination Start Address Register														
REG[80	EG[8010h] Default = 00000000h													Read/\	Vrite
	n/a											T Destinat	ion Start A	ddress bits	20-16
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						BitBLT D	estination S	Start Addre	ss bits 15-	-0					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 20-0

BitBLT Destination Start Address Bits [20:0]

A 21-bit register that specifies the destination start address for the BitBLT operation.

REG[8014h] Default = 00000000h															Read/V	Vrite
								n	ı/a							
31	30	29	28	27	26	25		24	23	22	21	20	19	18	17	16
		n/a							BitB	LT Memor	y Address	Offset bits	10-0			
15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0

bits 10-0

BitBLT Memory Address Offset Bits [10:0]

These bits are the display's 11-bit address offset from the starting word of line n to the starting word of line n + 1. They are used only for address calculation when the BitBLT is configured as a rectangular region of memory. They are not used for the displays.

BitBL REG[8	T Widt 3018h]	n Regis		lt = 000	000001	า								Read/V	Vrite
n/a															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n,	/a							BitBLT Wi	dth bits 9-	0			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 9-0

BitBLT Width Bits [9:0]

A 10-bit register that specifies the BitBLT width in pixels - 1.

BitBLT width in pixels = (REG[8018h] bits 9-0) + 1

BitBLT REG[80		nt Regi		lt = 000	100000h	1								Read/V	Vrite
							r	n/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a BitBLT Height bits 9-0															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 9-0

BitBLT Height Bits [9:0]

A 10-bit register that specifies the BitBLT height in lines - 1.

BitBLT height in lines = (REG[801Ch] bits 9-0) + 1

BitBLT Background Color Register															
REG[8	REG[8020h] Default = 00000000h												Read/Write		
	n/a														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BitBLT Background Color bits 15-0														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 15-0

BitBLT Background Color Bits [15:0]

This register specifies the BitBLT background color for Color Expansion or key color for Transparent BitBLT. For 16 bpp color depths (REG[8000h] bit 18 = 1), bits 15-0 are used. For 8 bpp color depths (REG[8000h] bit 18 = 0), bits 7-0 are used.

BitBLT Foreground Color Register REG[8024h] Default = 00000000h Read/Write															
	n/a														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	BitBLT Foreground Color bits 15-0														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 15-0

BitBLT Foreground Color Bits [15:0]

This register specifies the BitBLT foreground color for Color Expansion or Solid Fill. For 16 bpp color depths (REG[8000h] bit 18 = 1), bits 15-0 are used. For 8 bpp color depths (REG[8000h] bit 18 = 0), bits 7-0 are used.

8.6 2D Accelerator (BitBLT) Data Register Descriptions

The 2D Accelerator (BitBLT) data registers decode AB15-AB0 and require AB16 = 1. The BitBLT data registers are 32-bit wide. Byte access to the BitBLT data registers is not allowed.

2D Accelerator (BitBLT) Data Memory Mapped Region Register AB16-AB0 = 10000h-1FFFEh, even addresses Read/Write															
BitBLT Data bits 31-16															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BitBLT Data bits 15-0															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 15-0 BitBLT Data Bits [15:0]

This register specifies the BitBLT data. This register is loosely decoded from 10000h to 1FFFEh.

9 2D Accelerator (BitBLT) Engine

9.1 Overview

The S1D13A05 is designed with a built-in 2D BitBLT engine which increases the performance of Bit Block Transfers (BitBLT). It supports 8 and 16 bit-per-pixel color depths.

The BitBLT engine supports rectangular and linear addressing modes for source and destination in a positive direction for all BitBLT operations except the move BitBLT which also supports in a negative direction.

The BitBLT operations support byte alignment of all types. The BitBLT engine has a dedicated BitBLT IO access space. This allows the BitBLT engine to support simultaneous BitBLT and host side operations.

9.2 BitBLT Operations

The S1D13A05 2D BitBLT engine supports the following BitBLTs. For detailed information on using the individual BitBLT operations, refer to the S1D13A05 Programming Notes and Examples, document number X40A-G-003-xx.

- Write BitBLT.
- Move BitBLT.
- Solid Fill BitBLT.
- Pattern Fill BitBLT.
- Transparent Write BitBLT.
- Transparent Move BitBLT.
- · Read BitBLT.
- Color Expansion BitBLT.
- Move BitBLT with Color Expansion.

Note

For details on the BitBLT registers, see Section 8.5, "2D Acceleration (BitBLT) Registers (Offset = 8000h)" on page 160.

10 Frame Rate Calculation

The following formula is used to calculate the display frame rate.

$$FrameRate = \frac{f_{PCLK}}{(HT) \times (VT)}$$

Where:

 f_{PCLK} = PClk frequency (Hz)

HT = Horizontal Total

= ((REG[20h] bits 6-0) + 1) x 8 Pixels

VT = Vertical Total

= ((REG[30h] bits 9-0) + 1) Lines

11 Display Data Formats

The following diagrams show the display mode data formats for a little-endian system. 1 bpp: bit 0 $P_0P_1P_2P_3P_4P_5P_6P_7$ A_6 A_0 A_5 A_7 A_2 Byte 0 A_{14} A₈ A₁₅ A₁₀ A_{11} A₁₂ A_{13} Byte 1 LUT $P_n = RGB$ value from LUT A₁₇ A₁₆ A₂₀ A_{21} Byte 2 A_{22} Index (A_n) Host Address Display Memory Panel Display 2 bpp: hit 0 hit 7 $P_0P_1P_2P_3P_4P_5P_6P_7$ A_0 A_1 B_0 B_1 A_2 B_2 A_3 B_3 Byte 0 A_4 B_4 A_5 B_5 A_6 B_6 A_7 B_7 LUT Byte 1 P_n = RGB value from LUT A_8 A₁₁ B₈ A₉ B_9 A₁₀ B₁₀ B₁₁ Index (A_n, B_n) Byte 2 Host Address Display Memory Panel Display 4 bpp: bit 0 A_0 C_0 D_0 B_1 C_1 D_1 B_0 A_1 Byte 0 LUT A_2 B_2 C_2 D_2 A_3 B_3 C_3 D_3 Byte 1 $P_n = RGB$ value from LUT C₅ A_4 B_4 C_4 D_4 D_5 Byte 2 Index (A_n, B_n, C_n, D_n) Host Address Display Memory Panel Display 8 bpp: bit 0 $P_0P_1P_2P_3P_4P_5P_6P_7$ F_0 G_0 Byte 0 A_0 B_0 C_0 D_0 E_0 H_0 G_1 LUT C₁ Byte 1 B₁ D_1 E_1 H_1 P_n = RGB value from LUT Index $(\mathsf{A}_{\mathsf{n}},\,\mathsf{B}_{\mathsf{n}},\,\mathsf{C}_{\mathsf{n}},\,\mathsf{D}_{\mathsf{n}},\,\mathsf{E}_{\mathsf{n}},\,\mathsf{F}_{\mathsf{n}},\,\mathsf{G}_{\mathsf{n}},\,\mathsf{H}_{\mathsf{n}})$ G_2 C_2 Byte 2 B_2 D_2 H_2 Host Address Display Memory Panel Display 16 bpp: 5-6-5 RGB $B_0^3 B_0^2$ Byte 0 Bypasses LUT $P_n = (R_n^{4-0}, G_n^{5-0}, B_n^{4-0})$ R_0^3 $|R_0^2|R_0^1|R_0^0|G_0^5|G_0^4$ Byte 1 $|G_1^0|B_1^4|B_1^3|B_1^2|B_1^1|B_1^0$ G_1^1 Byte 2 Byte 3 R_1^3 R_1^2 $R_1^0 G_1^5$ G_1^4

Figure 11-1: 4/8/16 Bit-Per-Pixel Display Data Memory Organization

Display Buffer

Note

Host Address

- 1. The Host-to-Display mapping shown here is for a little endian system.
- 2. For 16 bpp format, R_n , G_n , B_n represent the red, green, and blue color components.

Panel Display

12 Look-Up Table Architecture

The following figures are intended to show the display data output path only.

Note

When Video Data Invert is enabled the video data is inverted after the Look-Up Table.

12.1 Monochrome Modes

The green Look-Up Table (LUT) is used for all monochrome modes.

1 Bit-per-pixel Monochrome Mode

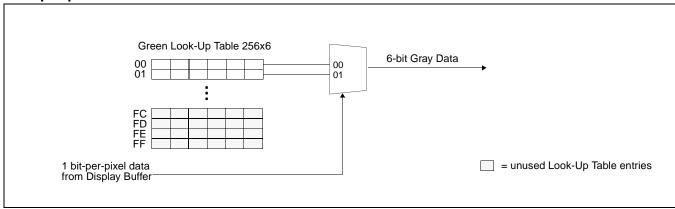


Figure 12-1: 1 Bit-per-pixel Monochrome Mode Data Output Path

2 Bit-per-pixel Monochrome Mode

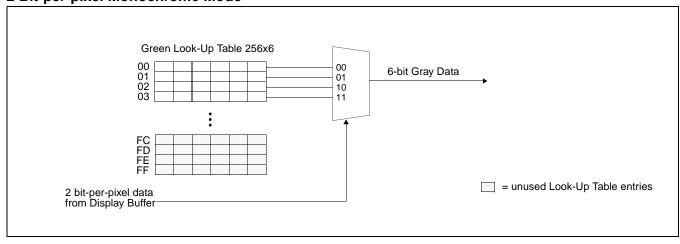


Figure 12-2: 2 Bit-per-pixel Monochrome Mode Data Output Path

4 Bit-per-pixel Monochrome Mode

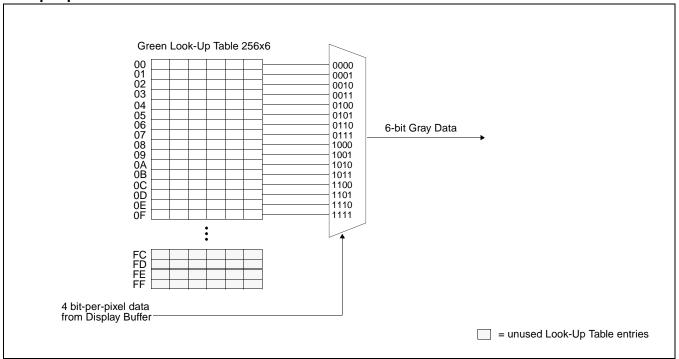


Figure 12-3: 4 Bit-per-pixel Monochrome Mode Data Output Path

8 Bit-per-pixel Monochrome Mode

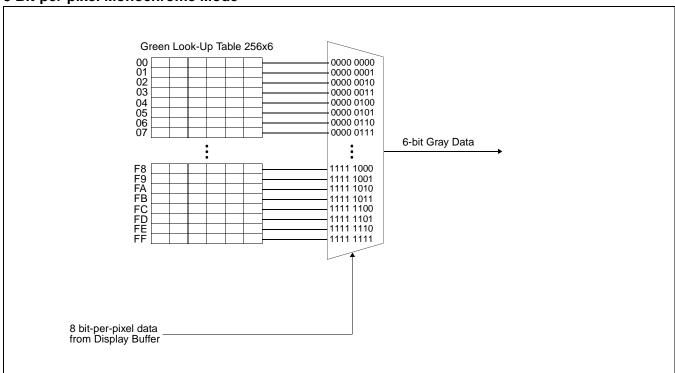


Figure 12-4: 8 Bit-per-pixel Monochrome Mode Data Output Path

16 Bit-Per-Pixel Monochrome Mode

The LUT is bypassed and the green data is directly mapped for this color depth—"Display Data Formats" on page 168..

12.2 Color Modes

1 Bit-Per-Pixel Color

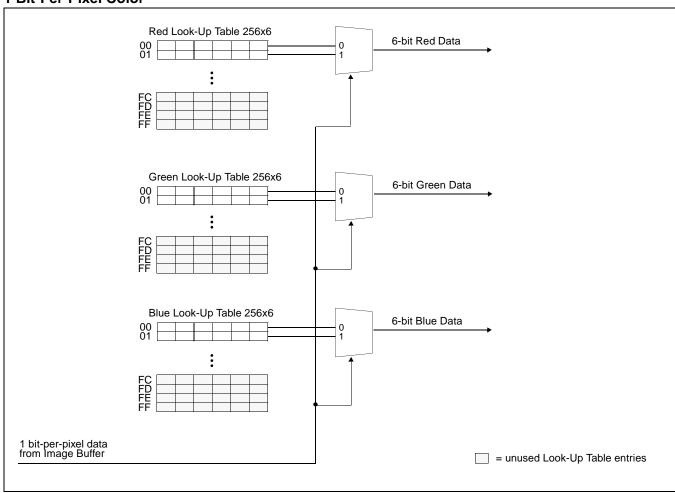


Figure 12-5: 1 Bit-Per-Pixel Color Mode Data Output Path

2 Bit-Per-Pixel Color

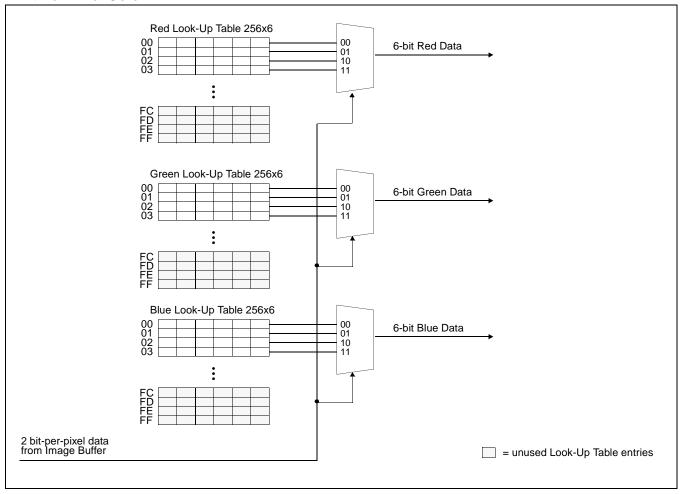


Figure 12-6: 2 Bit-Per-Pixel Color Mode Data Output Path

4 Bit-Per-Pixel Color

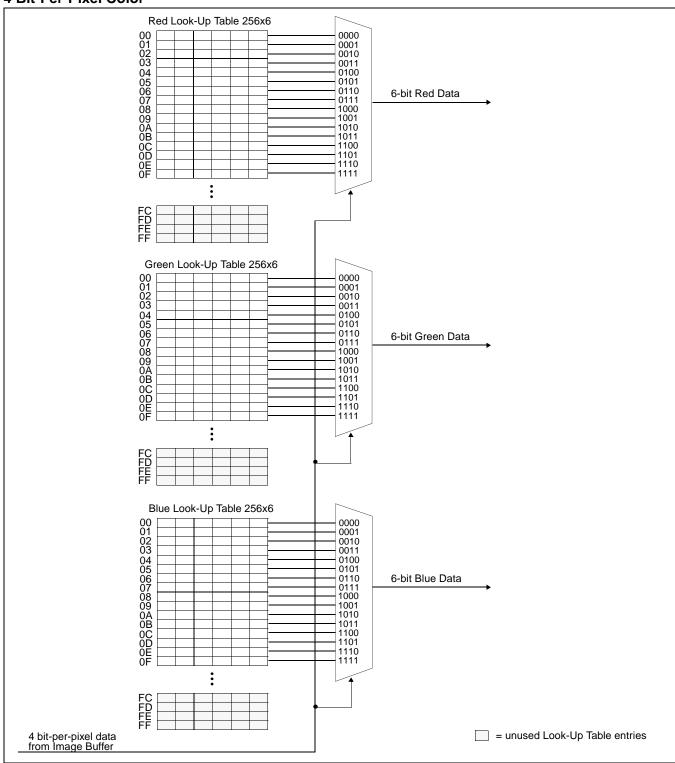


Figure 12-7: 4 Bit-Per-Pixel Color Mode Data Output Path

8 Bit-per-pixel Color Mode

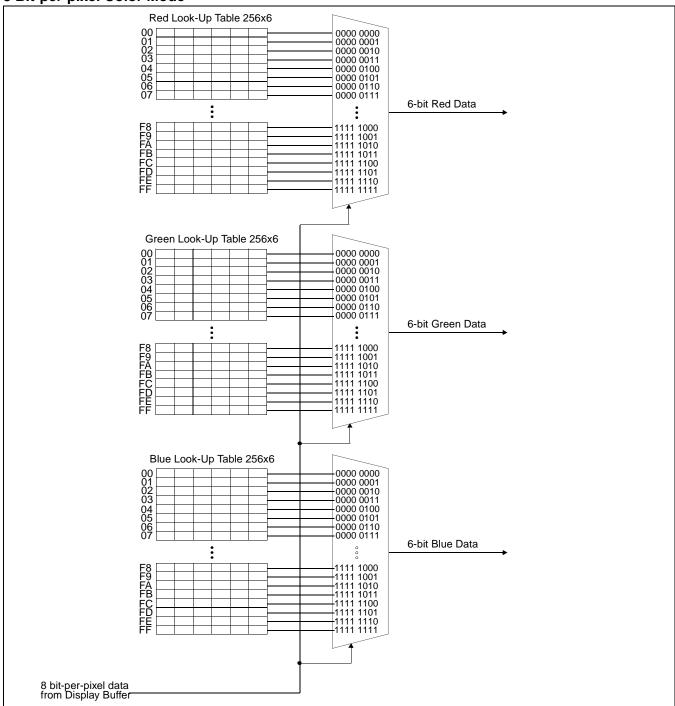


Figure 12-8: 8 Bit-per-pixel Color Mode Data Output Path

16 Bit-Per-Pixel Color Mode

The LUT is bypassed and the color data is directly mapped for this color depth—"Display Data Formats" on page 168.

13 SwivelView™

13.1 Concept

Most computer displays are refreshed in landscape orientation – from left to right and top to bottom. Computer images are stored in the same manner. SwivelViewTM is designed to rotate the displayed image on an LCD by 90°, 180°, or 270° in a counter-clockwise direction. The rotation is done in hardware and is transparent to the user for all display buffer reads and writes. By processing the rotation in hardware, SwivelViewTM offers a performance advantage over software rotation of the displayed image.

The image is not actually rotated in the display buffer since there is no address translation during CPU read/write. The image is rotated during display refresh.

13.2 90° SwivelView™

90° SwivelViewTM requires the Memory Clock (MCLK) to be at least 1.25 times the frequency of the Pixel Clock (PCLK), i.e. MCLK \geq 1.25PCLK.

The following figure shows how the programmer sees a 320x480 portrait image and how the image is being displayed. The application image is written to the S1D13A05 in the following sense: A–B–C–D. The display is refreshed by the S1D13A05 in the following sense: B-D-A-C.

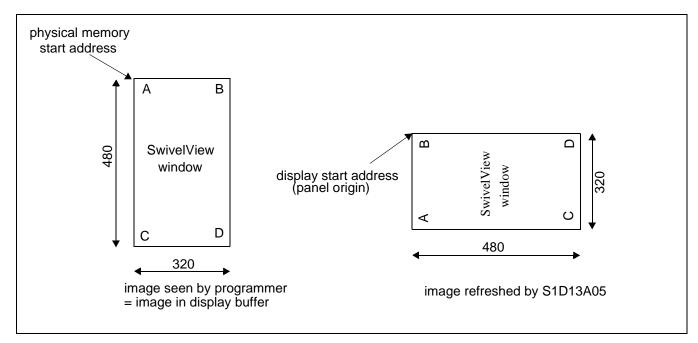


Figure 13-1: Relationship Between The Screen Image and the Image Refreshed in 90° SwivelView.

13.2.1 Register Programming

Enable 90° SwivelViewTM Mode

Set SwivelViewTM Mode Select bits (REG[10h] bits 17:16) to 01.

Display Start Address

The display refresh circuitry starts at pixel "B", therefore the Main Window Display Start Address register (REG[40h]) must be programmed with the address of pixel "B". To calculate the value of the address of pixel "B" use the following formula (assumes 8 bpp color depth).

```
REG[40h] bits 16:0 = ((image address + (panel height x bpp \div 8)) \div 4) - 1
= ((0 + (320 pixels x 8 bpp \div 8)) \div 4) - 1
= 79 (4Fh)
```

Line Address Offset

The Main Window Line Address Offset register (REG[44h]) is based on the display width and programmed using the following formula.

```
REG[44h] bits 9:0 = display width in pixels \div (32 \div bpp)
= 320 pixels \div 32 \div 8 bpp
= 80 (50h)
```

13.3 180° SwivelView™

The following figure shows how the programmer sees a 480x320 landscape image and how the image is being displayed. The application image is written to the S1D13A05 in the following sense: A–B–C–D. The display is refreshed by the S1D13A05 in the following sense: D-C-B-A.

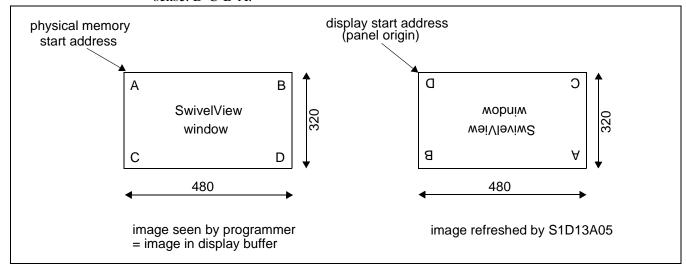


Figure 13-2: Relationship Between The Screen Image and the Image Refreshed in 180° SwivelView.

13.3.1 Register Programming

Enable 180° SwivelViewTM **Mode**

Set SwivelViewTM Mode Select bits (REG[10h] bits 17:16) to 10.

Display Start Address

The display refresh circuitry starts at pixel "D", therefore the Main Window Display Start Address register (REG[40h]) must be programmed with the address of pixel "D". To calculate the value of the address of pixel "D" use the following formula (assumes 8 bpp color depth).

```
REG[40h] bits 16:0
```

- = ((image address + (offset x (panel height 1) + panel width) x bpp \div 8) \div 4) 1
- $= ((0 + (480 \text{ pixels x } 319 \text{ pixels} + 480 \text{ pixels}) \times 8 \text{ bpp} \div 8) \div 4) 1$
- = 38399 (95FFh)

Line Address Offset

The Main Window Line Address Offset register (REG[44h]) is based on the display width and programmed using the following formula.

```
REG[44h] bits 9:0 = display width in pixels \div (32 \div bpp)
= 480 pixels \div 32 \div 8 bpp
= 120 (78h)
```

13.4 270° SwivelView™

270° SwivelViewTM requires the Memory Clock (MCLK) to be at least 1.25 times the frequency of the Pixel Clock (PCLK), i.e. $MCLK \ge 1.25$ PCLK.

The following figure shows how the programmer sees a 320x480 portrait image and how the image is being displayed. The application image is written to the S1D13A05 in the following sense: A–B–C–D. The display is refreshed by the S1D13A05 in the following sense: C-A-D-B.

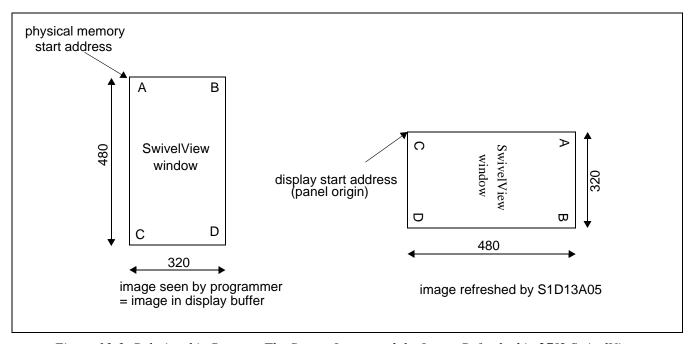


Figure 13-3: Relationship Between The Screen Image and the Image Refreshed in 270° SwivelView.

13.4.1 Register Programming

Enable 270° SwivelViewTM Mode

Set SwivelView™ Mode Select bits (REG[10h] bits 17:16) to 11.

Display Start Address

The display refresh circuitry starts at pixel "C", therefore the Main Window Display Start Address register (REG[40h]) must be programmed with the address of pixel "C". To calculate the value of the address of pixel "C" use the following formula (assumes 8 bpp color depth).

```
REG[40h] bits 16:0 = (image address + ((panel width - 1) x offset x bpp \div 8) \div 4)
= (0 + ((480 pixels - 1) x 320 pixels x 8 bpp \div 8) \div 4)
= 38320 (95B0h)
```

Line Address Offset

The Main Window Line Address Offset register (REG[44h]) is based on the display width and programmed using the following formula.

```
REG[44h] bits 9:0 = display width in pixels \div (32 \div bpp)
= 320 pixels \div 32 \div 8 bpp
= 80 (50h)
```

14 Picture-in-Picture Plus (PIP+)

14.1 Concept

Picture-in-Picture Plus (PIP⁺) enables a secondary window (or PIP⁺ window) within the main display window. The PIP⁺ window may be positioned anywhere within the virtual display and is controlled through the PIP⁺ Window control registers (REG[50h] through REG[5Ch]). The PIP⁺ window retains the same color depth and SwivelView orientation as the main window.

The following diagram shows an example of a PIP⁺ window within a main window and the registers used to position it.

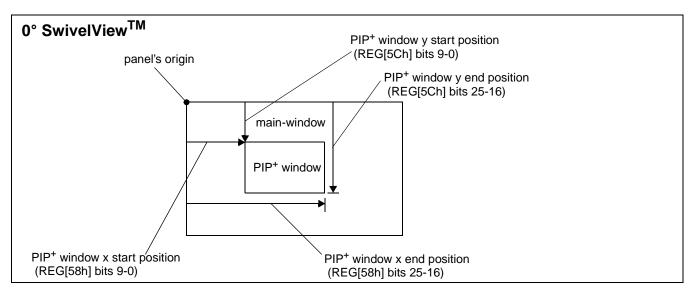


Figure 14-1: Picture-in-Picture Plus with SwivelView disabled

14.2 With SwivelView Enabled

14.2.1 SwivelView 90°

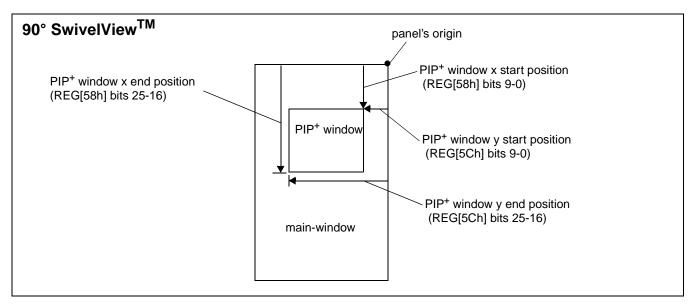


Figure 14-2: Picture-in-Picture Plus with SwivelView 90° enabled

14.2.2 SwivelView 180°

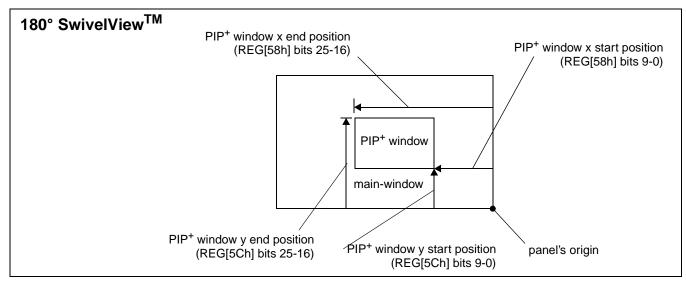


Figure 14-3: Picture-in-Picture Plus with SwivelView 180° enabled

14.2.3 SwivelView 270°

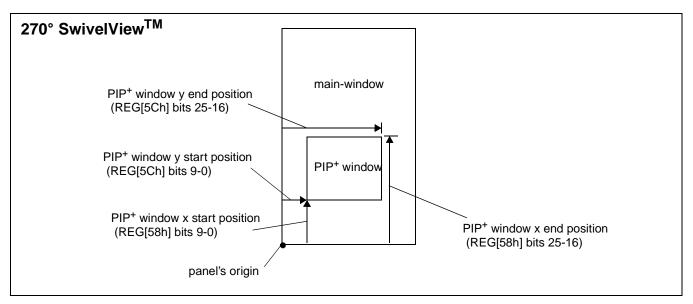


Figure 14-4: Picture-in-Picture Plus with SwivelView 270° enabled

15 Power Save Mode

A software initiated Power Save Mode is incorporated into the S1D13A05 to accommodate the need for power reduction in the hand-held devices market. This mode is enable via the Power Save Mode Enable bit (REG[14h] bit 4).

Software Power Save Mode saves power by powering down the control signals and stopping display refresh accesses to the display buffer. For programming information on disabling the clocks, see the *S1D13A05 Programming Notes and Examples*, document number X40A-G-003-xx.

	Software Power Save	Normal
IO Access Possible?	Yes	Yes
Memory Access Possible?	Yes ¹	Yes
Look-Up Table Registers Access Possible?	Yes	Yes
Display Active?	No	Yes
LCD I/F Outputs	Forced Low	Active
PWMCLK	Stopped	Active
GPIO Pins configured for HR-TFT	Forced Low	Active
GPIO Pins configured as GPIOs; Access Possible?	Yes ²	Yes
USB Running?	Yes ³	Yes

Table 15-1: Power Save Mode Function Summary

Note

After reset, the S1D13A05 is always in Power Save Mode. Software must initialize the chip (i.e. programs all registers) and then clear the Power Save Mode Enable bit.

¹ When power save mode is enabled, the memory controller is powered down and the status of the memory controller is indicated by the Memory Controller Power Save Status bit (REG[14h] bit 6). However, memory reads/writes are possible during power save mode because the S1D13A05 dynamically enables the memory controller for display buffer accesses.

² GPIOs can be accessed and if configured as outputs can be changed.

³ The power-down state of the USB section is controlled by the USBClk Enable bit (REG[4000h] bit 7).

16 USB Considerations

16.1 USB Oscillator Circuit

The following circuit provides an example implementation for using an external oscillator to drive USBCLK.

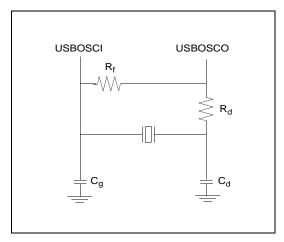


Figure 16-1: USB Oscillator Example Circuit

The following values are recommended for a 48MHz fundamental mode oscillator. If an oscillator of a different value is used, the capacitive and resistive values must be adjusted accordingly.

Table 16-1: Resistance and Capacitance Values for Example Circuit

Symbol	Value
R _f	1ΜΩ
R _d	470Ω
C _g	12pF
C _d	12pF

17 Mechanical Data

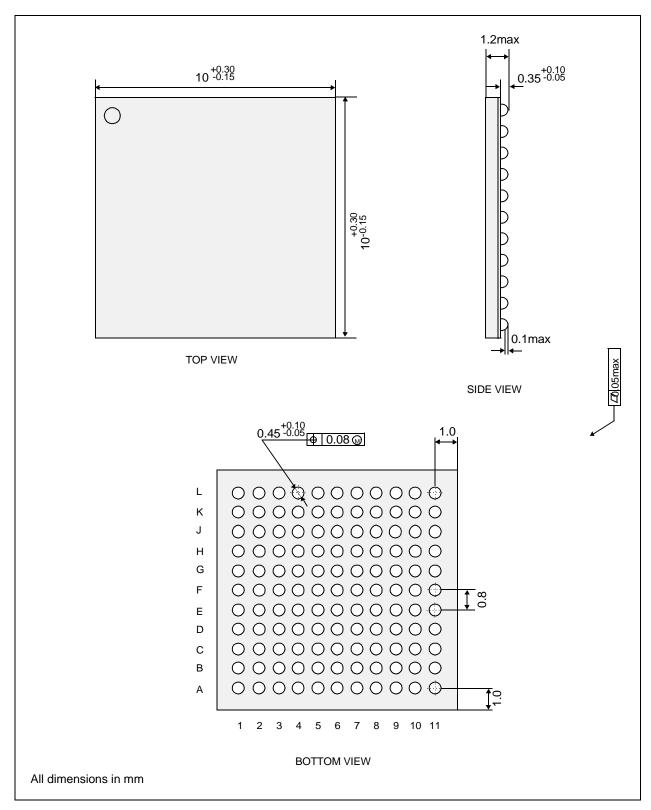


Figure 17-1: Mechanical Data PFBGA 121-pin Package

18 References

The following documents contain additional information related to the S1D13A05. Document numbers are listed in parenthesis after the document name. All documents can be found at the Epson Research and Development Website at www.erd.epson.com.

- S1D13A05 Product Brief (X40A-C-001-xx)
- S1D13A05 Programming Notes And Examples (X40A-G-003-xx)
- S1D13A05 Register Summary (X40A-R-001-xx)
- Interfacing to the Toshiba TMPR3905/3912 Microprocessor (X40A-G-002-xx)
- Interfacing to the PC Card Bus (X40A-G-005-xx)
- S1D13A05 Power Consumption (X40A-G-006-xx)
- Interfacing to the NEC VR4102/VR4111 Microprocessors (X40A-G-007-xx)
- Interfacing to the NEC VR4181 Microprocessor (X40A-G-008-xx)
- Interfacing to the Motorola MPC821 Microprocessor (X40A-G-009-xx)
- Interfacing to the Motorola MCF5307 "Coldfire" Microprocessor (X40A-G-010-xx)
- Interfacing to the Motorola MC68VZ328 Dragonball Microprocessor (X40A-012-xx)
- Interfacing to the Intel StrongARM SA-1110 Microprocessor (X40A-013-xx
- S1D13A05 Windows CE v3.x Display Drivers (X40A-E-002-xx)
- S1D13A05 Windows CE v3.x USB Driver (X40A-E-006-xx)
- S1D13A05 Linux Console Driver (X40A-E-004-xx)
- S1D13A05 Wind River WindML v2.0 Display Drivers (X40A-E-003-xx)
- S5U13A05B00C Rev. 1.0 Evaluation Board User Manual (X40A-G-004-xx)
- 13A05CFG Configuration Utility Users Manual (X40A-B-001-xx)
- 13A05PLAY Diagnostic Utility Users Manual (X40A-B-002-xx)
- 13A05VIEW Demonstration Utility Users Manual (X40A-B-003-xx)

19 Sales and Technical Support

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

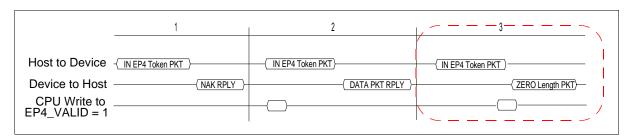
Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

THIS PAGE LEFT BLANK

Errata No. X00Z-P-001-01


Device: S1D13A03, S1D13A04, S1D13A05.

Description: Setting EP4 FIFO Valid bit while NAKing an IN token.

Bit 5 of REG[402Ch] indicates to the S1D13A0x controller when data in the endpoint 4 FIFO is ready to be transferred to the host computer. Changing the state of this bit at certain times may generate an error.

When the S1D13A0x USB controller receives an endpoint 4 IN request and endpoint 4 is not ready to transmit data (REG[402Ch] bit 5 = 0), the response is a NAK packet. If endpoint 4 is toggled to a ready to transmit state just before a NAK response packet is sent, the controller may erroneously send a zero length packet instead. When this happens, the data toggle state will be incorrectly set for the next endpoint 4 data transmit.

The following timing diagram shows the error occurring in section 3.

This unexpected occurrence of a zero length packet may cause file system handling errors for some operating systems.

Corrective Action:

There are two software solutions for this occurrence.

Disable USB Receiver before setting the EP4 FIFO Valid bit

The first solution involves disabling the USB receiver to avoid responding to an EP4 IN packet. During the time the USB receiver is disabled the EP4 FIFO Valid bit is set.

When the local CPU is ready to send data on endpoint 4 the steps to follow are:

- 1. Disable the USB differential input receiver (REG[4040h] bit 6 = 0)
- 2. Wait a minimum of 1µs. If needed, delays may be added
- 3. Enable the EP4 FIFO Valid bit (REG[402Ch] bit 5 = 1)
- 4. Clear the EP4 Interrupt status bit (REG[4004h] bit 4 = 1)
- 5. Enable the USB differential input receiver (REG[4040h] bit 6 = 1)

Note

Steps 1 through 5 are time critical and must be performed in less than $6 \mu s$.

Note

To comply with "EP4 NAK Status not set correctly in USB Status register", steps 3 and 4 must be completed within 5 µs of each other. For further information on "EP4 NAK Status not set correctly in USB Status register", see the S1D13A0x Programming Notes and Examples, document numbers X36A-G-003-xx, X37A-G-003-xx, and X40A-G-003-xx.

EP4 FIFO Valid bit set after NAK and before the next IN token.

The second solution is to wait until immediately after the USB has responded to an IN request with a NAK packet before setting the transmit FIFO valid bit. This solution is recommended only for fast processors.

When the local CPU is ready to send data on endpoint 4, it must first detect that a NAK packet has been sent. This is done by reading the EP4 Interrupt Status bit (REG[4004h] bit 4). If the EP4 FIFO Valid bit was not set, the EP4 Interrupt Status bit is set only if a NAK packet has been sent. When the local CPU detects the NAK it must immediately set the EP4 FIFO Valid bit (before responding to the next IN token).

After filling the EP4 FIFO the steps to follow before setting the EP4 FIFO Valid bit are:

- 1. Clear the EP4 Interrupt Status bit (REG[4004h] bit 4)
- 2. Read the EP4 Interrupt Status bit (REG[4004h] bit 4) until it is set
- 3. Set the EP4 FIFO Valid bit (REG[402Ch] bit 5 = 1)

Note

The setting of the EP4 FIFO Valid bit is time critical. The EP4 FIFO Valid bit must be set within 3 µs after the EP4 Interrupt Status has been set internally by the S1D13A0x.

Errata No. X00Z-P-001-01 Issue Date: 2002/08/22

S1D13A05 LCD/USB Companion Chip

Programming Notes and Examples

Document Number: X40A-G-003-04

Copyright © 2001, 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

1	Introduction	11
2	Identifying the S1D13A05	12
3	Initialization	13
4	Memory Models	14
	4.1 Display Buffer Location	
	4.2 Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades)	
	4.3 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades)	
	4.4 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades)	
	4.5 Memory Organization for 8 Bpp (256 Colors/64 Gray Shades)	16
	4.6 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)	16
5	Look-Up Table (LUT)	17
	5.1 Registers	17
	5.1.1 Look-Up Table Write Register	17
	5.1.2 Look-Up Table Read Register	18
	5.2 Look-Up Table Organization	18
	5.2.1 Gray Shade Modes	19
	5.2.2 Color Modes	22
6	Power Save Mode	26
	6.1 Overview	26
	6.2 Registers	27
	6.2.1 Power Save Mode Enable	27
	6.2.2 Memory Controller Power Save Status	27
	6.3 LCD Power Sequencing	28
	6.4 Enabling Power Save Mode	29
	6.5 Disabling Power Save Mode	29
7	SwivelView'	30
	7.1 SwivelView 90°	31
	7.2 SwivelView 180°	32
	7.3 SwivelView 270°	33
	7.4 SwivelView Registers	34
	7.4.1 SwivelView 0° (Landscape)	36
	7.4.2 SwivelView 90°	37
	7.4.3 SwivelView 180°	38
	7.4.4 SwivelView 270°	39
	7.5 Examples	40
	7.6 Limitations	44

	7.6.1	SwivelView 0° and 180°
	7.6.2	SwivelView 90° and 270°
8	Picture-In	-Picture Plus (PIP+)
	8.1 Regis	sters
	8.2 Pictu	re-In-Picture-Plus Examples
	8.2.1	SwivelView 0° (Landscape Mode)
	8.2.2	SwivelView 90°
	8.2.3	SwivelView 180°
	8.2.4	SwivelView 270°
	8.3 Limit	ations
	8.3.1	SwivelView 0° and 180°
	8.3.2	SwivelView 90° and 270°
9	2D BitBLT	「Engine
	9.1 Regis	sters
	9.2 BitBl	LT Descriptions
	9.2.1	Write BitBLT with ROP
	9.2.2	Color Expansion BitBLT
	9.2.3	Color Expansion BitBLT With Transparency
	9.2.4	Solid Fill BitBLT
	9.2.5	Move BitBLT in a Positive Direction with ROP
	9.2.6	Move BitBLT in Negative Direction with ROP
	9.2.7	Transparent Write BitBLT
	9.2.8	Transparent Move BitBLT in Positive Direction
	9.2.9	Pattern Fill BitBLT with ROP
	9.2.10	Pattern Fill BitBLT with Transparency
	9.2.11	Move BitBLT with Color Expansion
	9.2.12	Transparent Move BitBLT with Color Expansion
	9.2.13	Read BitBLT
	9.3 BitBl	LT Synchronization
	9.4 Knov	vn Limitations
	9.5 Samp	ole Code
10	Programn	ning the USB Controller101
	10.1 Regis	sters and Interrupts
	10.1.1	Registers
		Interrupts
	10.2 Initia	lization
		GPIO Setup
		USB Registers
		Transfers

	10.3.1	Receiving Data from the Host - the OUT command	. 104
	10.3.2	Sending Data to the Host - the IN command	. 108
	10.4 Know	vn Issues	. 113
	10.4.1	EP4 NAK Status not set correctly in USB Status Register	. 113
	10.4.2	Write to EP4 FIFO Valid bit cleared by NAK	. 114
	10.4.3	EP3 Interrupt Status bit set by NAKs	. 114
	10.4.4	"EP2 Valid Bit" in USB Status can be erroneously set by firmware	. 117
	10.4.5	Setting EP4 FIFO Valid bit while NAKing IN token	. 117
11	Hardware	Abstraction Layer	119
	11.1 Intro	duction	. 119
	11.2 API 1	for the HAL Library	. 119
	11.2.1	Startup Routines	. 120
	11.2.2	Memory Access	. 122
	11.2.3	Register Access	. 123
	11.2.4	Clock Support	. 125
	11.2.5	Miscellaneous	. 126
12	Sample C	ode	128
13	Sales and	I Technical Support	120

THIS PAGE LEFT BLANK

List of Tables

Table 5-1:	Look-Up Table Configurations	8
Table 5-2:	Suggested LUT Values for 1 Bpp Gray Shade	9
Table 5-3:	Suggested LUT Values for 4 Bpp Gray Shade	9
Table 5-4:	Suggested LUT Values for 4 Bpp Gray Shade	0
Table 5-5:	Suggested LUT Values for 8 Bpp Gray Shade	1
Table 5-6:	Suggested LUT Values for 1 bpp Color	2
Table 5-7:	Suggested LUT Values for 2 bpp Color	2
Table 5-8:	Suggested LUT Values for 4 bpp Color	3
Table 5-9:	Suggested LUT Values 8 bpp Color	4
Table 7-1:	SwivelView Mode Select Bits	4
Table 8-1:	32-bit Address Increments for PIP+ X Position in SwivelView 0° and 180° 4	8
Table 8-2:	32-bit Address Increments for Color Depth	9
Table 8-3:	32-bit Address Increments for Color Depth	0
Table 8-4:	32-bit Address Increments for Color Depth	2
Table 9-1:	BitBLT FIFO Words Available	8
Table 9-2 :	BitBLT ROP Code/Color Expansion Function Selection	9
Table 9-3:	BitBLT Operation Selection	0
	BitBLT Source Start Address Selection	
Table 9-5:	Possible BitBLT FIFO Writes	7
Table 9-6:	Possible BitBLT FIFO Writes	2
Table 9-7:	Possible BitBLT FIFO Writes	9
Table 9-8:	Possible BitBLT FIFO Reads	8
Table 10-1:	USB Controller Initialization Sequence	3
Table 11-1:	HAL Library API	9

THIS PAGE LEFT BLANK

List of Figures

Figure 4-1:	Pixel Storage for 1 Bpp in One Byte of Display Buffer
Figure 4-2:	Pixel Storage for 2 Bpp in One Byte of Display Buffer
Figure 4-3:	Pixel Storage for 4 Bpp in One Byte of Display Buffer
Figure 4-4:	Pixel Storage for 8 Bpp in One Byte of Display Buffer
Figure 4-5:	Pixel Storage for 16 Bpp in Two Bytes of Display Buffer
Figure 7-1:	SwivelView 90° Rotation
Figure 7-2:	SwivelView 90° Rotation
Figure 7-3:	SwivelView 270° Rotation
Figure 8-1:	Picture-in-Picture Plus with SwivelView Disabled
Figure 8-2:	Picture-in-Picture Plus with SwivelView disabled
Figure 8-3:	Picture-in-Picture Plus with SwivelView 90° enabled
Figure 8-4:	Picture-in-Picture Plus with SwivelView 180° enabled
Figure 8-5:	Picture-in-Picture Plus with SwivelView 270° enabled
Figure 9-1:	Move BitBLT Usage
Figure 10-1:	Endpoint 1 Data Reception
Figure 10-2:	Endpoint 3 Data Reception
Figure 10-3:	EndPoint 2 Data Transmission
Figure 10-4:	Endpoint 4 Data Transmission
Figure 10-5:	Endpoint 4 Interrupt Handling
Figure 10-6:	Firmware Looping Continuously on Received OUT packets
Figure 10-7:	Endpoint 3 Program Flow for Slow CPU

THIS PAGE LEFT BLANK

1 Introduction

This guide discusses programming issues and provides examples for the main features of the S1D13A05, such as SwivelView, Picture-in-Picture Plus, and the BitBLT engine. The example source code referenced in this guide is available on the web at www.erd.epson.com.

This guide also introduces the Hardware Abstraction Layer (HAL), which is designed to simplify the programming of the S1D13A05. Most S1D13xxx products have HAL support, thus allowing OEMs to do multiple designs with a common code base.

This document is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document and source before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Identifying the S1D13A05

The S1D13A05 can be identified by reading the value contained in the Product Information Register (REG[00h]). To identify the S1D13A05 follow the steps below.

- 1. Read REG[00h].
- 2. The production version of the S1D13A05 returns a value of 2Dxx402Dh (where xx depends on the configuration of the CNF[6:0] pins). This value can be broken down into the following.
 - 1. The product code for the S1D13A05 is 0Bh (001011 binary) and can be found in bits 7-2. The product code is repeated in bits 31-26.
 - 2. The revision code is 1h (01 binary) and can be found in bits 1-0. The revision code is repeated in bits 25-24.
 - 3. The display buffer size is encoded as 40h (00101000 binary) and is contained in bits 15-8.

3 Initialization

This section describes how to initialize the S1D13A05. Sample code for performing initialization of the S1D13A05 is provided in the file **init13A05.c** which is available on the internet at www.erd.epson.com.

S1D13A05 initialization can be broken into the following steps.

- 1. Set all registers to initial values. The values are obtained by using a **s1d13A0x.h** file exported from the 13A05CFG configuration utility. For more information on 13A05CFG, see the *13A05CFG User Manual*, document number X40A-B-001-xx.
- 2. Program the Look-Up Table (LUT) with color values. For details on programming the LUT, see Section 5, "Look-Up Table (LUT)" on page 17.
- 3. Clear the display buffer.

Refer to the HAL (Hardware Abstraction Layer) sample code available on the internet at www.erd.epson.com for S5U13A05B00C specific initialization (i.e. programming the Cypress clock chip).

4 Memory Models

The S1D13A05 contains a display buffer of 256K bytes and supports color depths of 1, 2, 4, 8, and 16 bit-per-pixel. For each color depth, the data format is packed pixel.

Packed pixel data may be envisioned as a stream of pixels. In this stream, pixels are packed adjacent to each other. If a pixel requires four bits, then it is located in the four most significant bits of a byte. The pixel to the immediate right on the display occupies the lower four bits of the same byte. The next two pixels to the immediate right are located in the following byte, etc.

4.1 Display Buffer Location

The S1D13A05 display buffer is 256K bytes of embedded SRAM. The display buffer is memory mapped and is accessible directly by software. The memory block location assigned to the S1D13A05 display buffer varies with each individual hardware platform.

For further information on the display buffer, see the *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx.

4.2 Memory Organization for One Bit-per-pixel (2 Colors/Gray Shades)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Pixel 0	Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7

Figure 4-1: Pixel Storage for 1 Bpp in One Byte of Display Buffer

At a color depth of 1 bpp, each byte of display buffer contains eight adjacent pixels. Setting or resetting any pixel requires reading the entire byte, masking out the unchanged bits and setting the appropriate bits to 1.

One bit pixels provide 2 gray shades/color possibilities. For monochrome panels the gray shades are generated by indexing into the first two elements of the green component of the Look-Up Table (LUT). For color panels the 2 colors are derived by indexing into the first 2 positions of the LUT.

4.3 Memory Organization for Two Bit-per-pixel (4 Colors/Gray Shades)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Pixel 0		Pixel 1		Pixel 2		Pixel 3	
bits 1-0		bits 1-0		bits 1-0		bits 1-0	

Figure 4-2: Pixel Storage for 2 Bpp in One Byte of Display Buffer

At a color depth of 2 bpp, each byte of display buffer contains four adjacent pixels. Setting or resetting any pixel requires reading the entire byte, masking out the unchanged bits and setting the appropriate bits to 1.

Two bit pixels provide 4 gray shades/color possibilities. For monochrome panels the gray shades are generated by indexing into the first 4 elements of the green component of the Look-Up Table (LUT). For color panels the 4 colors are derived by indexing into the first 4 positions of the LUT.

4.4 Memory Organization for Four Bit-per-pixel (16 Colors/Gray Shades)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		el 0 s 3-0			Pix bits	el 1 3-0	

Figure 4-3: Pixel Storage for 4 Bpp in One Byte of Display Buffer

At a color depth of 4 bpp, each byte of display buffer contains two adjacent pixels. Setting or resetting any pixel requires reading the entire byte, masking out the upper or lower nibble (4 bits) and setting the appropriate bits to 1.

Four bit pixels provide 16 gray shades/color possibilities. For monochrome panels the gray shades are generated by indexing into the first 16 elements of the green component of the Look-Up Table (LUT). For color panels the 16 colors are derived by indexing into the first 16 positions of the LUT.

4.5 Memory Organization for 8 Bpp (256 Colors/64 Gray Shades)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Pixel 0 bits 7-0								

Figure 4-4: Pixel Storage for 8 Bpp in One Byte of Display Buffer

At a color depth of 8 bpp, each byte of display buffer represents one pixel on the display. At this color depth the read-modify-write cycles are eliminated making the update of each pixel faster.

Each byte indexes into one of the 256 positions of the LUT. The S1D13A05 LUT supports six bits per primary color. This translates into 256K possible colors when color mode is selected. Therefore the display has 256 colors available out of a possible 256K colors.

When a monochrome panel is selected, the green component of the LUT is used to determine the intensity. The green indices, with six bits, can resolve 64 gray shades. Display memory values > 64 are truncated. Thus a display memory value of 65 (1000 0001) displays the same intensity as a display memory value of 1.

4.6 Memory Organization for 16 Bpp (65536 Colors/64 Gray Shades)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Red Component					Green Component		
bits 4-0					bits 5-3		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Green Component			Blue Component				
bits 2-0			bits 4-0				

Figure 4-5: Pixel Storage for 16 Bpp in Two Bytes of Display Buffer

At a color depth of 16 bpp the S1D13A05 is capable of displaying 64K (65536) colors. The 64K color pixel is divided into three parts: five bits for red, six bits for green, and five bits for blue. In this mode the LUT is bypassed and output goes directly into the Frame Rate Modulator.

Should monochrome mode be chosen at this color depth, the output sends the six bits of the green component to the modulator for a total of 64 possible gray shades.

5 Look-Up Table (LUT)

This section discusses programming the S1D13A05 Look-Up Table (LUT). Included is a summary of the LUT registers, recommendations for color/gray shade LUT values, and additional programming considerations. For a discussion of the LUT architecture, refer to the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

The S1D13A05 is designed with a LUT consisting of 256 red/green/blue entries. Each LUT entry is six bits wide. The color depth (bpp) determines how many indices are used. For example, 1 bpp uses the first 2 indices, 2 bpp uses the first 4 indices, 4 bpp uses the first 16 indices and 8 bpp uses all 256 indices. 16 bpp bypasses the LUT.

In color modes, the pixel values stored in the display buffer index directly to an RGB value stored in the LUT. In monochrome modes, the pixel value indexes into the green component of the LUT and the amount of green at that index controls the intensity.

5.1 Registers

5.1.1 Look-Up Table Write Register

Look-Up Table Write Register															
REG[18h] Default = 00000000h									Write	Only					
	LUT Write Address						LUT Red Write Data					n/	a		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LUT Green Write Data					n	/a			LUT Blue	Write Data	l		n/	а	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

This register receives the data to be written to the red (bits 23-18), green (bits 15-10), and blue (bits 7-2) components of the Look-Up Table (LUT). Also contained in this register is the LUT Write Address (bits 31-24) which forms a pointer to the location in the LUT where the RGB components will be written.

This register should be accessed using a 32-bit write cycle to ensure proper operation. If the Look-Up Table Write Register is accessed with 8 or 16-bit write, it is important to understand that the RGB data is latched into the LUT only after the completion of the write to the LUT Write Address bits. On little endian systems, this means a write to bits 31-24. On big endian systems, this means a write to bits 7-2.

This is a write-only register and returns 00000000h if read.

Note

For further information on the S1D13A05 LUT architecture, see the S1D13A05 Hard-ware Functional Specification, document number X40A-A-001-xx.

5.1.2 Look-Up Table Read Register

Look-Up Table Read Register															
REG[1Ch] Default = 00000000h Write Only (bits 31-24)/Read Only								Only							
	LUT Read Address (write only)						LUT Red Read Data					n,	′a		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LUT Green Read Data n/a						LUT Blue Read Data				n,	'a				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

This register contains the data returned from the red (bits 23-18), green (bits 15-10), and blue (bits 7-2) components of the Look-Up Table. This register also contains the LUT Read Address (bits 31-24) which forms a pointer to the offset in the LUT where the RGB components are read from.

Reading the LUT is a two step process. First the desired index must be set by writing the LUT Read Address bits with the desired index. Second, the LUT values are retrieved by reading the Look-Up Table Read Register.

Bits 31-24 are write only and will return 00h when read.

Note

For further information on the S1D13A05 LUT architecture, see the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

5.2 Look-Up Table Organization

- The Look-Up Table treats the value of a pixel as an index into an array. For example, a pixel value of zero would point to the first LUT entry, whereas a pixel value of seven would point to the eighth LUT entry.
- The value contained in each LUT entry represents the intensity of the given color or gray shade. This intensity can range in value from 0 to 3Fh.
- Increasing the LUT data value results in a brighter color or gray shade. For example, a
 LUT entry of FCh in the red bank results in bright red output while a LUT entry of 1Ch
 results in dull red.

		-			
Color Depth	Look	Effective Gray			
Color Deptil	RED	GREEN	BLUE	Shades/Colors	
1 bpp gray		2		2 gray shades	
2 bpp gray		4		4 gray shades	
4 bpp gray		16		16 gray shades	
8 bpp gray		64		64 gray shades	
16 bpp gray				64 gray shades	
1 bpp color	2	2	2	2 colors	
2 bpp color	4	4	4	4 colors	
4 bpp color	16	16	16	16 colors	
8 bpp color	256	256	256	256 colors	
16 bpp color				65536 colors	

Table 5-1: Look-Up Table Configurations

= Indicates the Look-Up Table is not used for that display mode

5.2.1 Gray Shade Modes

Gray shade (monochrome) modes are selected by the Color/Mono Panel Select bit (REG[0Ch] bit 6). When this bit is set to 0, the value output to the panel is derived solely from the green component of the LUT.

For each gray shade depth a table of sample LUT values is provided. These LUT values are a standardized set of intensities used by the Epson S1D13A05 utility programs.

Note

These LUT values show eight bits of significance. The S1D13A05 LUT uses only the six MSB. The 2 LSB are ignored.

1 bpp gray shade

The 1 bpp gray shade mode uses the green component of the first 2 LUT entries. The remaining indices of the LUT are unused.

Table 5-2: Suggested LUT Values for 1 Bpp Gray Shade

Index	Red	Green	Blue				
00	00	00	00				
01	00	FF	00				
02	00	00	00				
	00	00	00				
FF	00	00	00				
Have ed entries							

Unused entries

2 bpp gray shade

The 2 bpp gray shade mode uses the green component of the first 4 LUT entries. The remaining indices of the LUT are unused.

Table 5-3: Suggested LUT Values for 4 Bpp Gray Shade

Index	Red	Green	Blue	
00	00	00	00	
01	00	55	00	
02	00	AA	00	
03	00	FF	00	
04	00	00	00	
	00	00	00	
FF	00	00	00	

Unused entries

4 bpp gray shade

The 4 bpp gray shade mode uses the green component of the first 16 LUT entries. The remaining indices of the LUT are unused.

Table 5-4: Suggested LUT Values for 4 Bpp Gray Shade

Index	Red	Green	Blue		
00	00	00	00		
01	00	10	00		
02	00	20	00		
03	00	34	00		
04	00	44	00		
05	00	54	00		
06	00	68	00		
07	00	78	00		
08	00	88	00		
09	00	9C	00		
0A	00	AC	00		
0B	00	BC	00		
0C	00	CC	00		
0D	00	DC	00		
0E	00	EC	00		
0F	00	FC	00		
10	00	00	00		
	00	00	00		
FF	00	00	00		

Unused entries

8 bpp gray shade

When configured for 8 bpp gray shade mode, the green component of all 256 LUT entries may be used. The green component of the LUT has six bits of resolution resulting in 64 gray shades. The remaining 192 green color indices can be programmed, but only to one of the existing 64 intensities.

Table 5-5: Suggested LUT Values for 8 Bpp Gray Shade

Index	Red	Green	Blue	Index	Red	Green	Blue
00	00	00	00	20	00	80	00
01	00	04	00	21	00	84	00
02	00	08	00	22	00	88	00
03	00	0C	00	23	00	8C	00
04	00	10	00	24	00	90	00
05	00	14	00	25	00	94	00
06	00	18	00	26	00	98	00
07	00	1C	00	27	00	9C	00
08	00	20	00	28	00	A0	00
09	00	24	00	29	00	A4	00
0A	00	28	00	2A	00	A8	00
0B	00	2C	00	2B	00	AC	00
0C	00	30	00	2C	00	B0	00
0D	00	34	00	2D	00	B4	00
0E	00	38	00	2E	00	B8	00
0F	00	3C	00	2F	00	BC	00
10	00	40	00	30	00	C0	00
11	00	44	00	31	00	C4	00
12	00	48	00	32	00	C8	00
13	00	4C	00	33	00	CC	00
14	00	50	00	34	00	D0	00
15	00	54	00	35	00	D4	00
16	00	58	00	36	00	D8	00
17	00	5C	00	37	00	DC	00
18	00	60	00	38	00	E0	00
19	00	64	00	39	00	E4	00
1A	00	68	00	3A	00	E8	00
1B	00	6C	00	3B	00	EC	00
1C	00	70	00	3C	00	F0	00
1D	00	74	00	3D	00	F4	00
1E	00	78	00	3E	00	F8	00
1F	00	7C	00	3F	00	FC	00
				40	00	00	00
					00	00	00
				FF	00	00	00

Unused entries

16 bpp gray shade

The Look-Up Table is bypassed at this color depth, therefore programming the LUT is not required.

In this mode, the six bits of green in each pixel are used to set the absolute intensity of the image. This results in 64 gray shades.

5.2.2 Color Modes

In color display modes, the number of LUT entries used is determined by the color depth. For each supported color depth a table of sample LUT values is provided. These LUT values are a standardized set of colors used by the Epson S1D13A05 utility programs.

Note

These LUT values show eight bits of significance. The S1D13A05 LUT uses only the six MSB. The 2 LSB are ignored.

1 bpp color

When the S1D13A05 is configured for 1 bpp color mode the first 2 entries in the LUT are used. The remaining indices of the LUT are unused.

Table 5-6: Suggested LUT Values for 1 bpp Color

Index	Red	Green	Blue
00	00	00	00
01	FF	FF	FF
02	00	00	00
	00	00	00
FF	00	00	00

= Indicates unused entries in the LUT

2 bpp color

When the S1D13A05 is configured for 2 bpp color mode the first 4 entries in the LUT are used. The remaining indices of the LUT are unused.

Table 5-7: Suggested LUT Values for 2 bpp Color

Index	Red	Green	Blue
00	00	00	00
01	00	00	FF
02	FF	00	00
03	FF	FF	FF
04	00	00	00
	00	00	00
FF	00	00	00

= Indicates unused entries in the LUT

4 bpp color

When the S1D13A05 is configured for 4 bpp color mode the first 16 entries in the LUT are used. The remaining indices of the LUT are unused.

The following table shows LUT values that simulate those of a VGA operating in 16 color mode.

Table 5-8: Suggested LUT Values for 4 bpp Color

Index	Red	Green	Blue
00	00	00	00
01	00	00	AA
02	00	AA	00
03	00	AA	AA
04	AA	00	00
05	AA	00	AA
06	AA	AA	00
07	AA	AA	AA
08	00	00	00
09	00	00	FF
0A	00	FF	00
0B	00	FF	FF
0C	FF	00	00
0D	FF	00	FF
0E	FF	FF	00
0F	FF	FF	FF
10	00	00	00
	00	00	00
FF	00	00	00

= Indicates unused entries in the LUT

8 bpp color

When the S1D13A05 is configured for 8 bpp color mode all 256 entries in the LUT are used.

The S1D13A05 LUT has six bits (64 intensities) of intensity control per primary color which is the same as a standard VGA RAMDAC.

The following table shows LUT values that simulate the VGA default color palette.

Table 5-9: Suggested LUT Values 8 bpp Color

Index	R	G	В												
00	00	00	00	40	00	00	00	80	FF	FF	00	C0	00	00	00
01	00	00	AA	41	00	00	11	81	FF	EF	00	C1	00	11	11
02	00	AA	00	42	00	00	22	82	FF	DE	00	C2	00	22	22
03	00	AA	AA	43	00	00	33	83	FF	CD	00	C3	00	33	33
04	AA	00	00	44	00	00	44	84	FF	BC	00	C4	00	44	44
05	AA	00	AA	45	00	00	55	85	FF	AB	00	C5	00	55	55
06	AA	AA	00	46	00	00	66	86	FF	9A	00	C6	00	66	66
07	AA	AA	AA	47	00	00	77	87	FF	89	00	C7	00	77	77
08	55	55	55	48	00	00	89	88	FF	77	00	C8	00	89	89
09	00	00	FF	49	00	00	9A	89	FF	66	00	C9	00	9A	9A
0A	00	FF	00	4A	00	00	AB	8A	FF	55	00	CA	00	AB	AB
0B	00	FF	FF	4B	00	00	BC	8B	FF	44	00	СВ	00	BC	BC
0C	FF	00	00	4C	00	00	CD	8C	FF	33	00	CC	00	CD	CD
0D	FF	00	FF	4D	00	00	DE	8D	FF	22	00	CD	00	DE	DE
0E	FF	FF	00	4E	00	00	EF	8E	FF	11	00	CE	00	EF	EF
0F	FF	FF	FF	4F	00	00	FF	8F	FF	00	00	CF	00	FF	FF
10	00	00	00	50	00	00	FF	90	FF	00	00	D0	FF	00	00
11	11	11	11	51	00	11	FF	91	FF	00	11	D1	FF	11	11
12	22	22	22	52	00	22	FF	92	FF	00	22	D2	FF	22	22
13	33	33	33	53	00	33	FF	93	FF	00	33	D3	FF	33	33
14	44	44	44	54	00	44	FF	94	FF	00	44	D4	FF	44	44
15	55	55	55	55	00	55	FF	95	FF	00	55	D5	FF	55	55
16	66	66	66	56	00	66	FF	96	FF	00	66	D6	FF	66	66
17	77	77	77	57	00	77	FF	97	FF	00	77	D7	FF	77	77
18	89	89	89	58	00	89	FF	98	FF	00	89	D8	FF	89	89
19	9A	9A	9A	59	00	9A	FF	99	FF	00	9A	D9	FF	9A	9A
1A	AB	AB	AB	5A	00	AB	FF	9A	FF	00	AB	DA	FF	AB	AB
1B	ВС	ВС	ВС	5B	00	ВС	FF	9B	FF	00	ВС	DB	FF	ВС	ВС
1C	CD	CD	CD	5C	00	CD	FF	9C	FF	00	CD	DC	FF	CD	CD
1D	DE	DE	DE	5D	00	DE	FF	9D	FF	00	DE	DD	FF	DE	DE
1E	EF	EF	EF	5E	00	EF	FF	9E	FF	00	EF	DE	FF	EF	EF
1F	FF	FF	FF	5F	00	FF	FF	9F	FF	00	FF	DF	FF	FF	FF
20	00	00	00	60	00	FF	FF	A0	FF	00	FF	E0	00	FF	00
21	11	00	00	61	00	FF	EF	A1	EF	00	FF	E1	11	FF	11
22	22	00	00	62	00	FF	DE	A2	DE	00	FF	E2	22	FF	22
23	33	00	00	63	00	FF	CD	A3	CD	00	FF	E3	33	FF	33

R G В Index G В Index G R В Index R R В Index G 24 44 00 00 64 00 FF 00 FF E4 44 FF 44 ВС A4 ВC FF 55 00 00 65 00 AB AB 00 FF 55 FF 55 25 A5 E5 26 66 00 00 66 00 FF 9A A6 9A 00 FF E6 66 FF 66 27 77 00 00 67 00 FF 89 Α7 89 00 FF E7 77 FF 77 28 89 00 00 68 00 FF 77 A8 77 00 FF E8 89 FF 89 29 9A 00 00 69 00 FF 66 Α9 66 00 FF E9 9A FF 9A AΒ 00 00 FF 00 FF EΑ AΒ FF AB 2A 6A 00 55 AA 55 2B BC 00 00 6B 00 FF 44 AB 44 00 FF ΕB BC FF BC CD 00 33 33 CD 2C 00 6C 00 FF AC 00 FF EC CD FF 2D DE 00 00 FF 22 22 00 FF DE 6D 00 AD FF ED DE 2E EF 00 00 6E 00 FF 11 ΑE 11 00 FF EE EF FF EF 2F FF 00 00 6F 00 FF 00 AF 00 00 FF EF FF FF FF 00 00 30 00 00 70 00 FF 00 B0 00 F0 00 00 FF 00 31 00 11 00 71 11 FF 00 B1 11 00 11 F1 11 11 FF FF 00 22 22 22 FF 32 00 72 22 00 B2 00 22 F2 22 33 00 33 00 73 33 FF 00 В3 33 00 33 F3 33 33 FF 34 00 44 00 74 44 FF B4 44 00 44 F4 44 44 FF 00 35 00 55 00 75 55 FF 00 B5 55 00 55 F5 55 55 FF FF 36 00 66 00 76 66 FF 00 B6 66 00 66 F6 66 66 00 00 FF 37 77 77 77 FF 00 B7 77 00 77 F7 77 77 FF FF 38 00 89 00 78 89 00 B8 89 00 89 F8 89 89 39 00 9A 00 79 9A FF 00 B9 9A 00 9A F9 9A 9A FF 3A 00 AB 00 7A AB FF 00 BA AB 00 AB FΑ AB AB FF 3B 00 BC 00 7B BC FF 00 BB BC 00 BC FΒ BC BC FF 3C 00 CD 00 7C CD FF 00 BC CD 00 CD FC CD CD FF 00 00 DE 3D DE 7D DE FF 00 BD 00 DE FD DE DE FF 3E 00 EF 00 7E EF FF BE EF 00 EF FE EF EF FF 00

Table 5-9: Suggested LUT Values 8 bpp Color (Continued)

16 bpp color

7F

FF

FF

The Look-Up Table is bypassed at this color depth, therefore programming the LUT is not required.

FF

00

FF

FF

FF

FF

FF

BF

00

3F

00

FF

00

6 Power Save Mode

The S1D13A05 is designed for very low-power applications. During normal operation, the internal clocks are dynamically disabled when not required. The S1D13A05 design also includes a Power Save Mode to further save power. When Power Save Mode is initiated, LCD power sequencing is required to ensure the LCD bias power supply is disabled properly. For further information on LCD power sequencing, see Section 6.3, "LCD Power Sequencing" on page 28.

For Power Save Mode AC Timing, see the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

6.1 Overview

The S1D13A05 includes a software initiated Power Save Mode. Enabling/disabling Power Save Mode is controlled using the Power Save Mode Enable bit (REG[14h] bit 4).

While Power Save Mode is enabled the following conditions apply.

- Most registers are accessible.
 - USB registers are not accessible
- Memory writes are possible¹
- Memory reads are not possible
- LCD display is inactive.
- LCD interface outputs are forced low.

Note

¹ Memory writes are possible during power save mode because the S1D13A05 dynamically enables the memory controller for display buffer writes.

6.2 Registers

6.2.1 Power Save Mode Enable

Power REG[1		e C	Config			ster 000010)h									Read/	Write
	n/a																
31	30		29	28													16
n/a									VNDP Status (RO)	Memory Power Save Status (RO)	n/a	Power Save Mode Enable		n/a		Reserved	
15	14		13	12 11 10 9						7	6	5	4	3	2	1	0

The Power Save Mode Enable bit initiates Power Save Mode when set to 1. Setting the bit to 0 disables Power Save Mode and returns the S1D13A05 to normal mode. At reset this bit is set to 1.

Note

Enabling/disabling Power Save Mode requires proper LCD Power Sequencing. See Section 6.3, "LCD Power Sequencing" on page 28.

6.2.2 Memory Controller Power Save Status

Power REG[1		ve	Config	uratior Defau		ster 00001	0h	1									Read/	Write
										n	/a							
31	3	30 29 28 27 26 25 24 23 22 21 20 19 18													18	17	16	
31 30 29 28 27 26 25 24										VNDP Status (RO)	Memory Power Save Status (RO)	n/a	Power Save Mode Enable		n/a		Reserved	
15	1	4	13	12	11	10		9		8	7	6	5	4	3	2	1	0

The Memory Controller Power Save Status bit is a read-only status bit which indicates the power save state of the S1D13A05 SRAM interface. When this bit returns a 1, the SRAM interface is powered down and the memory clock source may be disabled. When this bit returns a 0, the SRAM interface is active. This bit returns a 0 after a chip reset.

Note

Memory writes are possible during power save mode because the S1D13A05 dynamically enables the memory controller for display buffer writes.

6.3 LCD Power Sequencing

The S1D13A05 requires LCD power sequencing (the process of powering-on and powering-off the LCD panel). LCD power sequencing allows the LCD bias voltage to discharge prior to shutting down the LCD signals, preventing long term damage to the panel and avoiding unsightly "lines" at power-on/power-off.

Proper LCD power sequencing for power-off requires a delay from the time the LCD power is disabled to the time the LCD signals are shut down. Power-on requires the LCD signals to be active prior to applying power to the LCD. This time interval depends on the LCD bias power supply design. For example, the LCD bias power supply on the S1D13A05 Evaluation Board requires 0.5 seconds to fully discharge. Other power supply designs may vary.

This section assumes the LCD bias power is controlled through GPIO0. The S1D13A05 GPIO pins are multi-use pins and may not be available in all system designs. For further information on the availability of GPIO pins, see the *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx.

6.4 Enabling Power Save Mode

Enable Power Save Mode using the following steps.

1. Turn off the LCD bias power.

Note

The S1D13A05 evaluation board uses GPIO0 to control the LCD bias power supplies. Your system design may vary.

- 2. Wait for the LCD bias power supply to discharge. The discharge time is based on the discharge rate of the power supply.
- 3. Enable Power Save Mode set REG[14h] bit 4 to 1.

The S1D13A05 is now in Power Save Mode. To further increase power savings PCLK and MCLK can be switched off (see steps 4 and 5).

- 4. At this time, the LCD pixel clock source may be disabled.
- 5. After the Memory Controller Power Save Status bit (REG[14h] bit 6) returns a 1, the Memory Clock source may be shut down.

6.5 Disabling Power Save Mode

Bring the S1D13A05 out of Power Save Mode using the following steps.

- 1. If the Memory Clock source is shut down, it must be started.
- 2. If the pixel clock is disabled, it must be started.
- 3. Disable Power Save Mode set REG[14h] bit 4 to 0.
- 4. Wait for the LCD bias power supply to charge. The charge time is based on the time required for the LCD power supply to reach operating voltage.
- 5. Enable the LCD bias power.

Note

The S1D13A05 evaluation board uses GPIO0 to control the LCD bias power supplies. Your system design may vary.

7 SwivelViewTM

Computer displays usually show an image in only one orientation, which is typically wider than it is high. For example, a display size of 320x240 is 320 pixels wide and 240 lines high.

SwivelView uses hardware to rotate the displayed image counter-clockwise in ninety degree increments. Rotating the image on a 320x240 display by 90° or 270° yields a display that is now 240 pixels wide and 320 lines high.

The S1D13A05 provides hardware support for SwivelView in the following configurations:

- SwivelView 0° (landscape) with or without pixel doubling
- SwivelView 90° without pixel doubling
- SwivelView 180° with or without pixel doubling
- SwivelView 270° without pixel doubling

The SwivelView feature only affects the main display window and the PIP⁺ window.

7.1 SwivelView 90°

When design constraints require physical rotation of a display by 90°, enable SwivelView 90° mode. The following example shows a LCD panel, which is physically rotated clockwise by 90°. The top left corner of the physical panel is marked for reference.

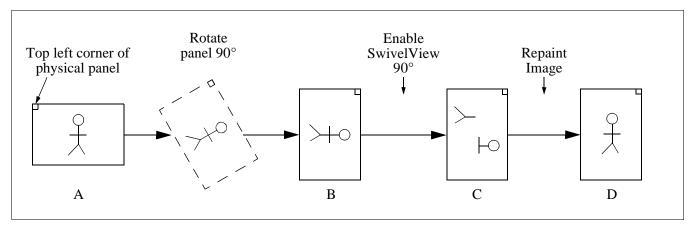


Figure 7-1: SwivelView 90° Rotation

The above illustration shows a series of transitions:

- A to B shows the LCD panel being physically rotated. Note that the physical display is rotated clockwise and the image is rotated counter-clockwise.
- B to C shows the effect of enabling SwivelView 90°. The broken image in C indicates that after the registers are programmed the image in display memory is invalid and must be repainted. The following register values must be updated to select SwivelView 90°:
 - SwivelView Mode Select (REG[010h] bits 17 and 16)
 - Main Window Display Start Address (REG[040h])
 - Main Window Line Address Offset (REG[044h])
 - PIP⁺ Line Address Offset (REG[054h])
 - PIP⁺ X End Position (REG[058h] bits 25-16)
 - PIP⁺ X Start Position (REG[058h] bits 9-0)
 - PIP⁺ Y End Position (REG[05Ch] bits 25-16)
 - PIP⁺ Y Start Position (REG[05Ch] bits 9-0)
- C to D shows the effect of repainting the display in SwivelView 90°. The image must be drawn based on the new display dimensions.

7.2 SwivelView 180°

When design constraints require physical rotation of a display by 180°, enable SwivelView 180° mode. The following example shows a LCD panel which is physically rotated by 180°. The top left corner of the physical panel is marked for reference.

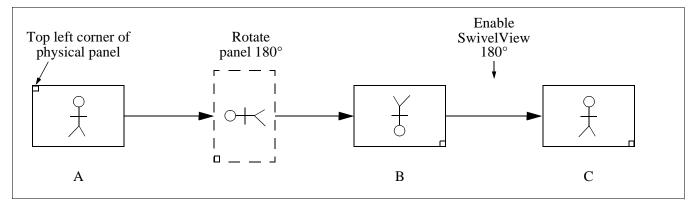


Figure 7-2: SwivelView 90° Rotation

The above illustration shows a series of transitions:

- A to B shows the LCD panel being physically rotated.
- B to C shows the effect of enabling SwivelView 180°. The following register values must be updated to support SwivelView 180°:
 - SwivelView Mode Select (REG[010h] bits 17 and 16)
 - Main Window Display Start Address (REG[040h])
 - Main Window Line Address Offset (REG[044h])
 - PIP⁺ X End Position (REG[058h] bits 25-16)
 - PIP⁺ X Start Position (REG[058h] bits 9-0)
 - PIP⁺ Y End Position (REG[05Ch] bits 25-16)
 - PIP⁺ Y Start Position (REG[05Ch] bits 9-0)
- Notice that the image does not have to be repainted when SwivelView 180° is enabled.

7.3 SwivelView 270°

When design constraints require physical rotation of a display by 270°, enable SwivelView 270° mode. The following example shows a LCD panel which is physically rotated clockwise by 270°. The top left corner of the physical panel is marked for reference.

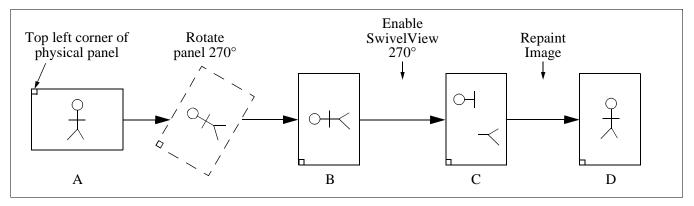


Figure 7-3: SwivelView 270° Rotation

The above illustration shows a series of transitions:

- A to B shows the LCD panel being physically rotated.
- B to C shows the effect of enabling SwivelView 270°. The broken image in Box C indicates that after registers are programmed the image in display memory is invalid and must be repainted. The following register values must be updated to support Swivel-View 270°:
 - SwivelView Mode Select (REG[010h] bits 17 and 16)
 - Main Window Display Start Address (REG[040h])
 - Main Window Line Address Offset (REG[044h])
 - PIP⁺ X End Position (REG[058h] bits 25-16)
 - PIP⁺ X Start Position (REG[058h] bits 9-0)
 - PIP⁺ Y End Position (REG[05Ch] bits 25-16)
 - PIP⁺ Y Start Position (REG[05Ch] bits 9-0)
- C to D shows the effect of repainting the display in SwivelView 270°. The image must be drawn based on the new display dimensions.

7.4 SwivelView Registers

These registers control the SwivelView feature.

Dis	spla	y Setti	ngs Re	gister												
RE	G[1	0h]		Defau	IIt = 000	000000	h							F	Read/W	rite
			n,	/a			Pixel Doubling Vertical	Pixel Doubling Horiz.	Display Blank	Dithering Disable	n/a	SW Video Invert	PIP ⁺ Window Enable	n/a		ew Mode lect
3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	n/a												-Bits actual valu	per-pixel S e: 1, 2, 4,		p)
1:	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

SwivelView Mode Select

The SwivelView modes are selected using the SwivelView Mode Select Bits[1:0] (bits 17-16). The combinations of these bits provide the following rotations.

SwivelView Mode Select Bit 1	SwivelView Mode Select Bit 0	SwivelView Orientation
0	0	0° (normal)
0	1	90°
1	0	180°
1	1	270°

Table 7-1: SwivelView Mode Select Bits

Main	Main Window Display Start Address Register														
REG[4	REG[40h] Default = 00000000h Read/W														
	n/a														bit 16
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•				М	ain Windo	w Display	Start Addr	ess bits 15	5-0		-	•	-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Main Window Display Start Address

The Main Window Display Start Address Register represents a DWORD address which points to the start of the main window image in the display buffer. An address of 0 is the start of the display buffer. The Main Window Display Start Address is programmed to the address of display memory which is at the upper left corner of the rotated image.

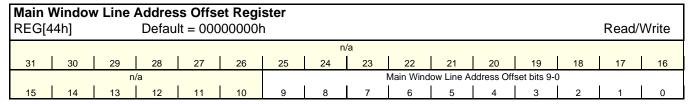
For the following SwivelView mode descriptions, calculations refer to the Upper Left Coordinate Address as the address of display memory for the coordinates at the upper left corner of the display whether or not the image is rotated. Normally this coordinate is zero and therefore the address is zero. However, this address is dependent on the number of bits-per-pixel and is programmed into the Main Window Display Start Address register in dwords.

In SwivelView 0°, program the Main Window Display Start Address = Upper Left Coordinate Address ÷ 4 In SwivelView 90°, program the Main Window Display Start Address

= ((Upper Left Coordinate Address + (unrotated panel height \times bpp \div 8) + ((4 - (unrotated panel height \times bpp \div 8)) & 03h)) \div 4) - 1

In SwivelView 180°, calculate the value of the Main Window Stride and then program the Main Window Display Start Address

= ((Upper Left Coordinate Address + (Main Window Stride \times (unrotated panel height -1)) + (unrotated panel width \times bpp \div 8) + ((4 - (unrotated panel width \times bpp \div 8)) & 03h)) \div 4) - 1


In SwivelView 270°, calculate the value of the Main Window Stride and then program the Main Window Display Start Address

= (Upper Left Coordinate Address + ((unrotated panel width - 1) × Main Window Stride)) ÷ 4

Note

Truncate all fractional values before writing to the address registers.

SwivelView 0° and 180° require the unrotated panel width to be a multiple of $(32 \div bits-per-pixel)$. SwivelView 90° and 270° require the unrotated panel height to be a multiple of $(32 \div bits-per-pixel)$. If this is not possible, refer to Section 7.6, "Limitations" on page 44.

Main Window Line Address Offset

The Main Window Line Address Offset Register indicates the number of dwords per line in the main window image.

For SwivelView 0° and 180° , the image width must be at least the rotated panel width. For SwivelView 90° and 270° , the image width must be at least the rotated panel height. In addition, the image width must be a multiple of $(32 \div bpp)$. If the image width is not such a multiple, a slightly larger width must be chosen (see Section 7.6, "Limitations").

Unrotated panel width and *Unrotated panel height* refer to the physical panel dimensions in pixels. *Stride* is the number of bytes required for one line of the image; the offset register represents the stride in DWORD steps.

Main Window Stride = unrotated panel width \times bpp \div 8

Note

In SwivelView 0° or 180° the image width must be equal to or greater than the unrotated panel width and in SwivelView 90° or 270° the image width must be equal to or greater than the unrotated panel height.

number of dwords per line = unrotated panel width \div (32 \div bpp)

7.4.1 SwivelView 0° (Landscape)

This section describes how to program the registers to establish SwivelView 0° in a series of steps. Calculations in each step must be truncated to integers. For the following SwivelView mode descriptions, calculations refer to the *Upper Left Coordinate Address* as the address of display memory for coordinates at the upper left corner of the display.

1. Determine the Stride.

```
Stride = unrotated panel width \times bpp \div 8
```

2. Determine the Upper Left Coordinate Address.

```
Upper Left Coordinate Address
=(upper coordinate × Stride) + (left coordinate ÷ bpp)
```

3. Determine and program the Main Window Display Start Address Register.

```
Main Window Display Start Address Register
= Upper Left Coordinate Address ÷ 4
```

4. Determine and program the Main Window Line Offset Register.

```
Main Window Line Offset Register
= display width in pixels ÷ (32 ÷ bpp)
```

7.4.2 SwivelView 90°

This section describes how to program the registers to establish SwivelView 90° in a series of steps. Calculations in each step must be truncated to integers. For the following SwivelView mode descriptions, calculations refer to the *Upper Left Coordinate Address* as the address of display memory for the coordinates at the upper left corner of the rotated display.

1. Determine the Stride.

```
Stride = unrotated panel width \times bpp \div 8
```

2. Determine the Upper Left Coordinate Address.

```
Upper Left Coordinate Address
= (upper-coordinate × Stride) + (left-coordinate ÷ bpp)
```

3. Determine and program the Main Window Display Start Address Register.

```
Main Window Display Start Address Register
= ((Upper Left Coordinate Address + unrotated panel height × bpp ÷ 8))
+ ((4 - (unrotated panel height × bpp ÷ 8))) & 03h)) ÷ 4) - 1
```

4. Determine and program the Main Window Line Address Offset Register.

```
Main Window Line Address Offset Register
= unrotated panel height ÷ (32 ÷ bpp)
```

7.4.3 SwivelView 180°

This section describes how to program the registers to establish SwivelView 180° in a series of steps. Calculations in each step must be truncated to integers. For the following SwivelView mode descriptions, calculations refer to the *Upper Left Coordinate Address* as the address of display memory for the coordinates at the upper left corner of the rotated display.

1. Determine the Stride.

```
Stride = rotated panel width \times bpp \div 8
```

2. Determine the Upper Left Coordinate Address.

```
Upper Left Coordinate Address
=(upper coordinate × Stride) + (left coordinate ÷ bpp)
```

3. Determine and program the Main Window Display Start Address Register.

```
Main Window Display Start Address Register
= ((Upper Left Coordinate Address + (Stride × (unrotated panel height - 1))
+ (unrotated panel width × bpp ÷ 8)) + ((4 - unrotated panel width × bpp ÷ 8))
& 03h)) ÷ 4) - 1
```

4. Determine and program the Main Window Line Address Offset Register.

```
Main Window Line Address Offset Register
= unrotated panel height ÷ (32 ÷ bpp)
```

7.4.4 SwivelView 270°

This section describes how to program the registers to establish SwivelView 270° in a series of steps. Calculations in each step must be truncated to integers. For the following SwivelView mode descriptions, calculations refer to the *Upper Left Coordinate Address* as the address of display memory for the coordinates at the upper left corner of the rotated display.

1. Determine the Stride.

```
Stride = unrotated panel height \times bpp \div 8
```

2. Determine the Upper Left Coordinate Address.

```
Upper Left Coordinate Address
= (upper coordinate × Stride) + (left coordinate ÷ bpp)
```

3. Determine and program the Main Window Display Start Address Register.

```
Main Window Display Start Address Register
= ((Upper Left Coordinate Address + ((unrotated panel width - 1) × Stride)) ÷ 4
```

4. Determine and program the Main Window Line Address Offset Register.

```
Main Window Line Address Offset Register = unrotated panel height ÷ (32 ÷ bpp)
```

7.5 Examples

Example 1: In SwivelView 0° (normal) mode, program the main window registers for a 320x240 panel at a color depth of 4 bpp.

1. Determine the Stride.

Stride = unrotated panel width \times bpp \div 8

2. Determine the Upper Left Coordinate Address.

```
Upper Left Coordinate Address
= (0 \times \text{Stride}) + (0 \div \text{bpp})
= 0
```

3. Determine and program the Main Window Display Start Address. The main window is typically placed at the start of display memory which is at display address 0.

```
Main Window Display Start Address Register
= Upper Left Coordinate Address ÷ 4
= 0
```

Program the Main Window Display Start Address register. REG[40h] is set to 00000000h.

4. Determine the Main Window Line Address Offset.

```
number of dwords per line

= unrotated panel width ÷ (32 ÷ bpp)

= 320 ÷ (32 ÷ 4)

= 40

= 28h
```

Program the Main Window Line Address Offset register. REG[44h] is set to 00000028h.

Example 2: In SwivelView 90° mode, program the main window registers for a 320x240 panel at a color depth of 4 bpp.

1. Determine the Stride.

```
Stride = unrotated panel width \times bpp \div 8
```

2. Determine the Upper Left Coordinate Address.

```
Upper Left Coordinate Address
= (0 \times \text{Stride}) + (0 \div \text{bpp})
= 0
```

3. Determine and program the Main Window Display Start Address. The main window is typically placed at the start of display memory, which is at display address 0.

```
Main Window Display Start Address Register
= ((Upper Left Coordinate Address + (unrotated panel height \times bpp \div 8) + ((4 - (unrotated panel height \times bpp \div 8)) & 03h)) \div 4) - 1
= ((0 + (240 \times 4 \div 8) + ((4 - (240 \times 4 \div 8)) & 03h)) \div 4) - 1
= 29
= 1Dh
```

Program the Main Window Display Start Address register. REG[40h] is set to 0000001Dh.

4. Determine and program the Main Window Line Address Offset.

```
number of dwords per line
= unrotated panel height ÷ (32 ÷ bpp)
= 240 ÷ (32 ÷ 4)
= 30
= 1Eh
```

Program the Main Window Line Address Offset register. REG[44h] is set to 0000001Eh.

Example 3: In SwivelView 180° mode, program the main window registers for a 320x240 panel at a color depth of 4 bpp.

1. Determine the Stride.

```
Stride
= unrotated panel width \times bpp \div 8
= 320 \times 4 \div 8
= 160
= A0h
```

2. Determine the Upper Left Coordinate Address.

```
Upper Left Coordinate Address
= (0 \times \text{Stride}) + (0 \div \text{bpp})
= 0
```

3. Determine and program the Main Window Display Start Address. The main window is typically placed at the start of display memory which is at display address 0.

```
Main Window Display Start Address Register
= ((Upper Left Coordinate Address + (Stride \times (unrotated panel height - 1)) + (unrotated panel width \times bpp ÷ 8) + ((4 - (unrotated panel width \times bpp ÷ 8)) & 03h)) ÷ 4) - 1
= ((0+(160 \times (240-1)) + (320 \times 4 ÷ 8) + ((4 - (320 \times 4 ÷ 8)) & 03h)) ÷ 4) - 1
= 9599
= 257Fh
```

Program the Main Window Display Start Address register. REG[40h] is set to 0000257Fh.

4. Determine and program the Main Window Line Address Offset.

```
number of dwords per line

= unrotated panel width \div (32 \div bpp)

= 320 \div (32 \div 4)

= 40

= 28h
```

Program the Main Window Line Address Offset register. REG[44h] is set to 00000028h.

Example 4: In SwivelView 270° mode, program the main window registers for a 320x240 panel at a color depth of 4 bpp.

1. Determine the Stride.

```
Stride
= unrotated panel height × bpp ÷ 8
= 240 \times 4 \div 8
= 120
= 78h
```

2. Determine the Upper Left Coordinate Address.

```
Upper Left Coordinate Address
= (0 \times \text{Stride}) + (0 \div \text{bpp})
= 0
```

3. Determine and program Main Window Display Start Address. The main window is typically placed at the start of display memory, which is at display address 0.

```
Main Window Display Start Address Register
= (Upper Left Coordinate Address + ((unrotated panel width - 1) × Stride)) ÷ 4
= (0 + ((320 - 1) × 120)) ÷ 4
= 9570
= 2562h
```

Program the Main Window Display Start Address register. REG[40h] is set to 00002562h.

4. Determine and program the Main Window Line Address Offset.

```
number of dwords per line

= unrotated panel height \div (32 \div bpp)

= 240 \div (32 \div 4)

= 30

= 1Eh
```

Program the Main Window Line Address Offset register. REG[44h] is set to 0000001Eh.

7.6 Limitations

7.6.1 SwivelView 0° and 180°

In SwivelView 0° and 180° , the Main Window Line Address Offset Register (REG[44h]) requires the *panel width* to be a multiple of $(32 \div bits-per-pixel)$. If this is not the case, then the Main Window Line Address Offset Register must be programmed to a longer line which meets this requirement. This longer line creates a virtual image where the width is *Main Window Line Address Offset Register* × $(32 \div bits-per-pixel)$.

In SwivelView 0°, this virtual image should be drawn in display memory as left justified, and in SwivelView 180°, this virtual image should be drawn in display memory as right justified.

A left-justified image is one drawn in display memory such that each of the image's lines only use the left most portion of the line width defined by the line address offset register (i.e. starting at horizontal position 0).

A right-justified image is one drawn in display memory such that each of the image's lines only use the right most portion of the line width defined by the line address offset register (i.e. starting at a non-zero horizontal position which is the virtual width - image width).

7.6.2 SwivelView 90° and 270°

In SwivelView 90° and 270°, the Main Window Line Address Offset Register (REG[44h]) requires the *panel height* to be a multiple of $(32 \div \text{bits-per-pixel})$. If this is not the case, then the Main Window Line Address Offset Register must be programmed to a longer line which meets this requirement. This longer line creates a virtual image whose width is *Main Window Line Address Offset Register* \times $(32 \div \text{bits-per-pixel})$.

In SwivelView 270°, this virtual image should be drawn in display memory as left justified, and in SwivelView 90°, this virtual image should be drawn in display memory as right justified.

A left-justified image is one drawn in display memory such that each of the image's lines only use the left most portion of the line width defined by the line address offset register (i.e. starting at horizontal position 0).

A right-justified image is one drawn in display memory such that each of the image's lines only use the right most portion of the line width defined by the line address offset register (i.e. starting at a non-zero horizontal position which is the virtual width - image width).

8 Picture-In-Picture Plus (PIP+)

Picture-in-Picture Plus (PIP⁺) enables a secondary window (or PIP⁺ window) within the main display window. The PIP⁺ window may be positioned anywhere within the virtual display and is controlled through the PIP⁺ Window control registers (REG[50h] through REG[5Ch]). The PIP⁺ window retains the same color depth and SwivelView orientation as the main window.

A PIP⁺ window can be used to display temporary items such as a dialog box or to "float" the display item so that the system doesn't have to exclude the area during screen repaints.

The following diagram shows an example of a PIP⁺ window within a main window.

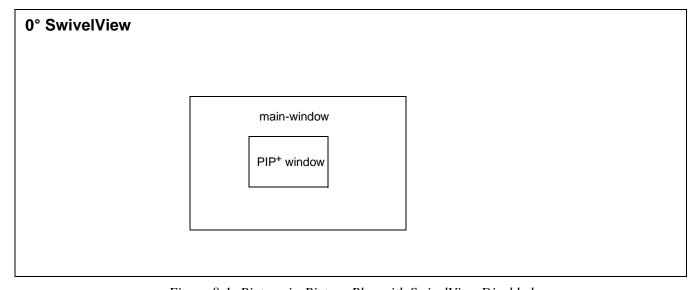


Figure 8-1: Picture-in-Picture Plus with SwivelView Disabled

8.1 Registers

The following registers control the Picture-In-Picture Plus feature.

Displ REG[ings Re	_		000000	h							F	Read/W	rite
		n	/a			Pixel Doubling Vertical	Pixel Doubling Horiz.	Display Blank	Dithering Disable	n/a	SW Video Invert	PIP ⁺ Window Enable	n/a	SwivelVie Sel	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	n/a												per-pixel S e: 1, 2, 4,	elect 8 or 16 bpp	o)
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

PIP⁺ Window Enable

The PIP⁺ Window Enable bit enables a PIP⁺ window within the main window. The location of the PIP⁺ window within the landscape window is determined by the PIP⁺ X Position register (REG[58h]) and PIP⁺ Y Position register (REG[5Ch]). The PIP⁺ window has its own Display Start Address register (REG[50h]) and Line Address Offset register (REG[54h]). The PIP⁺ window shares the same color depth and SwivelViewTM orientation as the main window.

PIP+ I REG[y Star	t A	ddres Defa		_			0h	l										Read/	Write
	n/a															bit 16					
31	30	29		28		27		26		25		24	23	22	21	20	1	9	18	17	16
										PIP+ D	Dis	play Start	Address I	oits 15-0							
15	14	13		12		11		10		9		8	7	6	5	4	;	3	2	1	0

PIP⁺ Display Start Address

The PIP⁺ Display Start Address register is a DWORD which represents an address that points to the start of the PIP⁺ window image in the display buffer. An address of 0 is the start of the display buffer. For the following PIP⁺ descriptions, the *desired byte address* is the starting display address for the PIP⁺ window image.

```
In SwivelView 0°, program the start address
= desired byte address ÷ 4

In SwivelView 90°, program the start address
= ((desired byte address + (PIP<sup>+</sup> width × bpp ÷ 8)
+ ((4 - (PIP<sup>+</sup> width × bpp ÷ 8)) & 03h)) ÷ 4) - 1

In SwivelView 180°, program the start address
= ((desired byte address + (PIP<sup>+</sup> Stride × (PIP<sup>+</sup> height - 1))
+ (PIP<sup>+</sup> width × bpp ÷ 8) + ((4 - (PIP<sup>+</sup> width × bpp ÷ 8)) & 03h)) ÷ 4) - 1

In SwivelView 270°, program the start address
= (desired byte address + ((PIP<sup>+</sup> height - 1) × PIP<sup>+</sup> Stride)) ÷ 4
```

Note

Truncate all fractional values before writing to the address registers.

SwivelView 0° and 180° require the PIP⁺ width to be a multiple of $(32 \div \text{bits-per-pixel})$. SwivelView 90° and 270° require the PIP⁺ height to be a multiple of $(32 \div \text{bits-per-pix-el})$. If this is not possible, refer to Section 8.3, "Limitations".

PIP ⁺ L REG[5		dress (_	e r 1000001	า								Read/	Write
							n	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	n/a PIP ⁺ Line Address Offset bits 9-0														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

PIP⁺ Line Address Offset

The PIP⁺ Line Address Offset register indicates the number of dwords per line in the PIP⁺ window image.

The image width must be a multiple of $(32 \div bpp)$. If the image width is not such a multiple, a slightly larger width must be chosen (see Section 8.3, "Limitations").

PIP⁺ width and *PIP*⁺ height refer to the PIP⁺ dimensions as seen in SwivelView 0° (landscape mode). Stride is the number of bytes required for one line of the image; the offset register represents the stride in DWORD steps.

 PIP^+ Stride = image width \times bpp \div 8

For SwivelView 0° and 180°, program the line address offset

- $= PIP^+ Width$
- $= ((REG[58h] bits 25:16) (REG[58h] bits 9:0) + 1) \times (32 \div bpp)$

For SwivelView 90° and 270°, program the line address offset

- $= PIP^+ Width$
- = $((REG[5Ch] bits 25:16) (REG[5Ch] bits 9:0) + 1) \times (32 \div bpp)$

PIP+ X	PIP ⁺ X Positions Register															
REG[58h] Default = 00000000h												Read/Write				
n/a							PIP ⁺ X End Position bits 9-0									
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
n/a									PIP	X Start P	osition bits	9-0				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

PIP⁺ X End Position

The PIP⁺ X End Position bits determine the horizontal end of the PIP⁺ window in 0° and 180° SwivelView orientations. These bits determine the vertical end position in 90° and 270° SwivelView. For further information on defining the value of the X End Position, see Section 8.2, "Picture-In-Picture-Plus Examples" on page 53.

This register increments differently based on the SwivelView orientation. For 0° and 180° SwivelView the X End Position is incremented by X pixels where X is relative to the current color depth. For 90° and 270° SwivelView the X End Position is incremented in 1 line increments.

Table 8-1: 32-bit Address Increments for PIP⁺ X Position in SwivelView 0° and 180°

Bits-Per-Pixel (Color Depth)	Pixel Increment (X)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

In SwivelView 0° , these bits set the horizontal coordinates (x) of the PIP⁺ window's right edge. Increasing x moves the right edge towards the right in steps of (32 ÷ bits-per-pixel) (see Table 8-1:). The horizontal coordinates start at pixel 0.

Program the PIP⁺ Window X End Position so that PIP⁺ Window X End Position = $x \div (32 \div bits-per-pixel)$

Note

Truncate the fractional part of the above equation.

In SwivelView 90°, these bits set the vertical coordinates (y) of the PIP⁺ window's bottom edge. Increasing y moves the bottom edge downward in 1 line steps. The vertical coordinates start at line 0.

Program the PIP⁺ Window X End Position so that PIP⁺ Window X End Position = y

In SwivelView 180°, these bits set the horizontal coordinates (x) of the PIP⁺ window's left edge. Increasing x moves the left edge towards the right in steps of $(32 \div \text{bits-per-pixel})$ (see Table 8-1:). The horizontal coordinates start at pixel 0.

Program the PIP⁺ Window X End Position so that PIP^+ Window X End Position = (panel width - x - 1) ÷ (32 ÷ bits-per-pixel)

Note

Truncate the fractional part of the above equation.

In SwivelView 270°, these bits set the vertical coordinates (y) of the PIP⁺ window's top edge. Increasing y moves the top edge downwards in 1 line steps. The vertical coordinates start at line 0.

Program the PIP⁺ Window X End Position so that PIP⁺ Window X End Position = panel width - y - 1

PIP+ X Start Position

The PIP⁺ X Start Position bits determine the horizontal position of the start of the PIP⁺ window in 0° and 180° SwivelView orientations. These bits determine the vertical start position in 90° and 270° SwivelView. For further information on defining the value of the X Start Position, see Section 8.2, "Picture-In-Picture-Plus Examples" on page 53.

The register increments differently based on the SwivelView orientation. For 0° and 180° SwivelView the X Start Position is incremented by X pixels where X is relative to the current color depth. For 90° and 270° SwivelView the X Start Position is incremented in 1 line increments.

Bits-per-pixel (Color Depth)	Pixel Increment (X)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

Table 8-2: 32-bit Address Increments for Color Depth

In SwivelView 0° , these bits set the horizontal coordinates (x) of the PIP⁺ windows's left edge. Increasing x moves the left edge towards the right in steps of (32 ÷ bits-per-pixel) (see Table 8-2:). The horizontal coordinates start at pixel 0.

Program the PIP⁺ Window X Start Position so that PIP⁺ Window X Start Position = $x \div (32 \div bits-per-pixel)$

Note

Truncate the fractional part of the above equation.

In SwivelView 90°, these bits set the vertical coordinates (y) of the PIP⁺ window's top edge. Increasing y moves the top edge downward in 1 line steps. The vertical coordinates start at line 0.

Program the PIP⁺ Window X Start Position so that PIP⁺ Window X Start Position = y

In SwivelView 180°, these bits set the horizontal coordinates (x) of the PIP $^+$ window's right edge. Increasing x moves the right edge towards the right in steps of (32 \div bits-perpixel) (see Table 8-2:). The horizontal coordinates start at pixel 0.

Program the PIP⁺ Window X Start Position so that PIP⁺ Window X Start Position = (panel width - x - 1) \div (32 \div bits-per-pixel)

Note

Truncate the fractional part of the above equation.

In SwivelView 270°, these bits set the vertical coordinates (y) of the PIP⁺ window's bottom edge. Increasing y moves the bottom edge downwards in 1 line steps. The vertical coordinates start at line 0.

Program the PIP⁺ Window X Start Position so that PIP⁺ Window X Start Position = panel width - y - 1

PIP ⁺ Y Positions Register															
REG[5Ch] Default = 00000000h											Read/Write				
n/a							PIP ⁺ Y End Position bits 9-0								
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n,	/a			PIP+ Y Start Position bits 9-0									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

PIP+ Y End Position

The PIP $^+$ Y End Position bits determine the vertical end position of the PIP $^+$ window in 0° and 180° SwivelView orientations. These bits determine the horizontal end position in 90° and 270° SwivelView. For further information on defining the value of the Y End Position, see Section 8.2, "Picture-In-Picture-Plus Examples" on page 53.

The register increments differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y End Position is incremented in 1 line increments. For 90° and 270° SwivelView the Y End Position is incremented by *Y* pixels where *Y* is relative to the current color depth.

Table 8-3: 32-bit Address Increments for Color Depth

Bits-Per-Pixel (Color Depth)	Pixel Increment (Y)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

In SwivelView 0° , these bits set the vertical coordinates (y) of the PIP⁺ windows's bottom edge. Increasing y moves the bottom edge downwards in 1 line steps. The vertical coordinates start at line 0.

Program the PIP⁺ Window Y End Position so that PIP⁺ Window Y End Position = y

In SwivelView 90°, these bits set the horizontal coordinates (x) of the PIP⁺ window's left edge. Increasing x moves the left edge towards the right in steps of $(32 \div bits-per-pixel)$ (see Table 8-3:). The horizontal coordinates start at pixel 0.

Program the PIP⁺ Window Y End Position so that PIP⁺ Window Y End Position = (panel height - x - 1) \div (32 \div bits-per-pixel)

Note

Truncate the fractional part of the above equation.

In SwivelView 180°, these bits set the vertical coordinates (y) of the PIP⁺ window's top edge. Increasing y moves the top edge downwards in 1 line steps. The vertical coordinates start at line 0.

Program the PIP⁺ Window Y End Position so that PIP⁺ Window Y End Position = panel height - y - 1

In SwivelView 270°, these bits set the horizontal coordinates (x) of the PIP $^+$ window's right edge. Increasing x moves the right edge towards the right in steps of (32 \div bits-perpixel) (see Table 8-3:). The horizontal coordinates start at pixel 0.

Program the PIP⁺ Window Y End Position so that PIP⁺ Window Y End Position = $x \div (32 \div bits-per-pixel)$

Note

Truncate the fractional part of the above equation.

PIP+ Y Start Position

The PIP⁺ Y Start Position bits determine the vertical start position of the PIP⁺ window in 0° and 180° SwivelView orientations. These bits determine the horizontal start position in 90° and 270° SwivelView. For further information on defining the value of the Y Start Position, see Section 8.2, "Picture-In-Picture-Plus Examples" on page 53.

The register increments differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y Start Position is incremented in 1 line increments. For 90° and 270° SwivelView the Y Start Position is incremented by Y pixels where Y is relative to the current color depth.

Bits-Per-Pixel (Color Depth)	Pixel Increment (Y)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4

Table 8-4: 32-bit Address Increments for Color Depth

In SwivelView 0°, these bits set the vertical coordinates (y) of the PIP⁺ windows's top edge. Increasing y moves the top edge downwards in 1 line steps. The vertical coordinates start at line 0.

16 bpp

Program the PIP⁺ Window Y Start Position so that PIP⁺ Window Y Start Position = y

In SwivelView 90°, these bits set the horizontal coordinates (x) of the PIP $^+$ window's right edge. Increasing x moves the right edge towards the right in steps of (32 \div bits-per-pixel) (see Table 8-4:). The horizontal coordinates start at pixel 0.

Program the PIP⁺ Window Y Start Position so that PIP^+ Window Y Start Position = (panel height - x - 1) ÷ (32 ÷ bits-per-pixel)

Note

Truncate the fractional part of the above equation.

In SwivelView 180°, these bits set the vertical coordinates (y) of the PIP⁺ window's bottom edge. Increasing y moves the bottom edge downwards in 1 line steps. The vertical coordinates start at line 0.

Program the PIP⁺ Window Y Start Position so that PIP⁺ Window Y Start Position = panel height - y - 1

In SwivelView 270°, these bits set the horizontal coordinates (x) of the PIP $^+$ window's left edge. Increasing x moves the left edge towards the right in steps of (32 ÷ bits-per-pixel) (see Table 8-4:). The horizontal coordinates start at pixel 0.

Program the PIP⁺ Window Y Start Position so that PIP⁺ Window Y Start Position = $x \div (32 \div bits-per-pixel)$

Note

Truncate the fractional part of the above equation.

8.2 Picture-In-Picture-Plus Examples

8.2.1 SwivelView 0° (Landscape Mode)

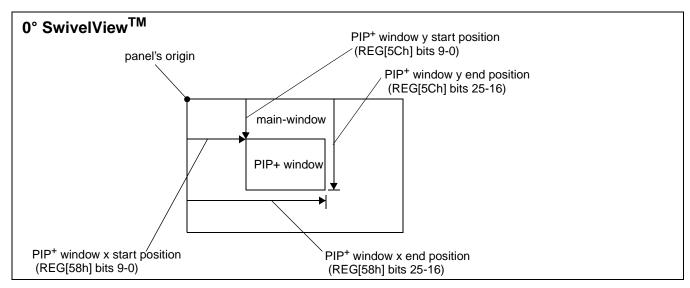


Figure 8-2: Picture-in-Picture Plus with SwivelView disabled

SwivelView 0° (or landscape) is a mode in which both the main and PIP⁺ window are non-rotated. The images for each window are typically placed consecutively, with the main window image starting at address 0 and followed by the PIP⁺ window image. In addition, both images must start at addresses which are dword-aligned (the last two bits of the starting address must be 0).

Note

It is possible to use the same image for both the main window and PIP⁺ window. To do so, set the PIP⁺ Line Address Offset register (REG[54h]) to the same value as the Main Window Line Address Offset register (REG[44h].

Example 5: Program the PIP⁺ window registers for a 320x240 panel at 4 bpp, with the PIP⁺ window positioned at (80, 60) with a width of 160 and a height of 120.

1. Determine the value for the PIP⁺ Window X Positions and PIP⁺ Window Y Positions registers. Let the top left corner of the PIP⁺ window be (x1, y1), and let the bottom right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP⁺ Window X Positions register sets the horizontal coordinates of the PIP⁺ window's top left and bottom right corners. The PIP⁺ Window Y Positions register sets the vertical coordinates of the PIP⁺ window's top left and bottom right corners.

The required values are calculated as follows:

```
X Start Position
```

```
= x1 \div (32 \div bpp)
= 80 \div (32 \div 4)
= 10
= 0Ah
```

Y Start Position

= y1 = 60 = 3Ch

X End Position

```
= x2 \div (32 \div bpp)
= (80 + 160 - 1) \div (32 \div 4)
= 29.875
= 1Dh (truncated fractional part)
```

Y End Position

= y2 = 60 + 120 - 1 = 179 = B3h 2. Program the PIP⁺ Window X Positions register with the X Start Position in bits 9-0 and the X End Position in bits 25-16. REG[58h] is set to 001D000Ah. Program the PIP⁺ Window Y Positions register with the Y Start Position in bits 9-0 and the Y End Position in bits 25-16. REG[5Ch] is set to 00B3003Ch.

Due to truncation, the dimensions of the PIP⁺ window may have changed. Recalculate the PIP⁺ window width and height below:

```
PIP+ Width
```

```
= ((REG[58h] bits 25:16) - (REG[58h] bits 9:0) + 1) \times (32 \div bpp)
= (1Dh - 0Ah + 1) \times (32 \div 4)
= 160 pixels
```

PIP Height

```
= (REG[5Ch] bits 25:16) - (REG[5Ch] bits 9:0) + 1
= B3h - 3Ch + 1
= 120 lines
```

3. Determine the PIP⁺ display start address.

The main window image must take up 320 x 240 pixels \times bpp \div 8 = 9600h bytes. If the main window starts at address 0h, the PIP⁺ window can start at 9600h.

```
PIP<sup>+</sup> display start address
```

```
= desired byte address ÷ 4
```

 $= 9600h \div 4$

= 2580h.

Program the PIP⁺ Display Start Address register. REG[50h] is set to 00002580h.

4. Determine the PIP⁺ line address offset.

```
number of dwords per line
```

```
= image width ÷ (32 ÷ bpp)
= 160 ÷ (32 ÷ 4)
= 20
= 14h
```

Program the PIP⁺ Line Address Offset register. REG[54h] is set to 00000014h.

5. Enable the PIP⁺ window.

Program the PIP⁺ Window Enable bit. REG[10h] bit 19 is set to 1.

8.2.2 SwivelView 90°

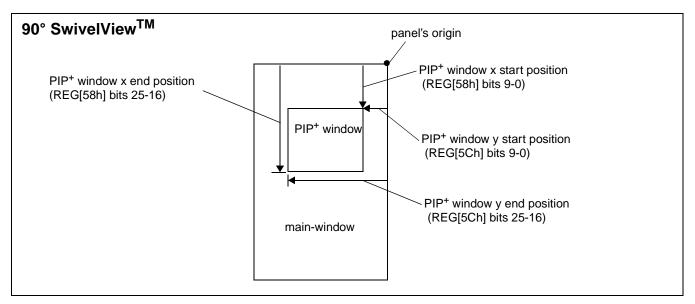


Figure 8-3: Picture-in-Picture Plus with SwivelView 90° enabled

SwivelView 90° is a mode in which both the main and PIP⁺ windows are rotated 90° counter-clockwise when shown on the panel. The images for each window are typically placed consecutively, with the main window image starting at address 0 and followed by the PIP⁺ window image. In addition, both images must start at addresses which are dwordaligned (the last two bits of the starting address must be 0).

Note

It is possible to use the same image for both the main window and PIP⁺ window. To do so, set the PIP⁺ Line Address Offset register (REG[54h]) to the same value as the Main Window Line Address Offset register (REG[44h]).

Example 6: In SwivelView 90°, program the PIP+ window registers for a 320x240 panel at 4 bpp, with the PIP+ window positioned at SwivelView 90° coordinates (60, 80) with a width of 120 and a height of 160.

1. Determine the value for the PIP⁺ Window X Positions and PIP⁺ Window Y Positions registers. Let the top left corner of the PIP⁺ window be (x1, y1), and let the bottom right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP⁺ Window X Positions register sets the vertical coordinates of the PIP⁺ window's top right and bottom left corners. The PIP⁺ Window Y Positions register sets the horizontal coordinates of the PIP⁺ window's top right and bottom left corners.

The required values are calculated as follows:

```
X Start Position
```

= y1

= 80

= 50h

Y Start Position

```
= (panel height - x2 - 1) ÷ (32 ÷ bpp)
```

$$= (240 - (60 + 120 - 1) - 1) \div (32 \div 4)$$

= 7.5

= 07h (truncated fractional part)

X End Position

= y2

= 80 + 160 - 1

= 239

= EFh

Y End Position

= (panel height - x1 - 1) ÷ (32 ÷ bpp)

 $= (240 - 60 - 1) \div (32 \div 4)$

= 22.375

= 16h (truncated fractional part)

2. Program the PIP⁺ Window X Positions register with the X Start Position in bits 9-0 and the X End Position in bits 25-16. REG[58h] is set to 00EF0050h. Program the PIP⁺ Window Y Positions register with the Y Start Position in bits 9-0 and the Y End Position in bits 25-16. REG[5Ch] is set to 00160007h.

Due to truncation, the dimensions of the PIP⁺ window may have changed. Recalculate the PIP⁺ window width and height below:

```
PIP<sup>+</sup> Width

= ((REG[5Ch] \text{ bits } 25:16) - (REG[5Ch] \text{ bits } 9:0) + 1) \times (32 \div \text{bpp})

= (16h - 07h + 1) \times (32 \div 4)

= 128 \text{ pixels } (\text{note that this is different from the desired width})

PIP Height

= (REG[58h] \text{ bits } 25:16) - (REG[58h] \text{ bits } 9:0) + 1
```

= EFh - 50h + 1 = 160 lines

3. Determine the PIP⁺ display start address. The main window image must take up 320 x 240 pixels \times bpp \div 8 = 9600h bytes. If the main window starts at address 0h, then the PIP⁺ window can start at 9600h.

PIP⁺ display start address

```
= ((desired byte address + (PIP<sup>+</sup> width × bpp \div 8)
+ ((4 - (PIP<sup>+</sup> width × bpp \div 8)) & 03h)) \div 4) - 1
= ((9600h + (128 × 4 \div 8) + ((4 - (128 × 4 \div 8)) & 03h)) \div 4) - 1
= 9615
= 258Fh
```

Program the PIP⁺ Display Start Address register. REG[50h] is set to 0000258Fh.

4. Determine the PIP⁺ line address offset.

```
number of dwords per line

= image width \div (32 \div bpp)

= 128 \div (32 \div 4)

= 16

= 10h
```

Program the PIP⁺ Line Address Offset register. REG[54h] is set to 00000010h.

5. Enable the PIP⁺ window.

Program the PIP⁺ Window Enable bit. REG[10h] bit 19 is set to 1.

8.2.3 SwivelView 180°

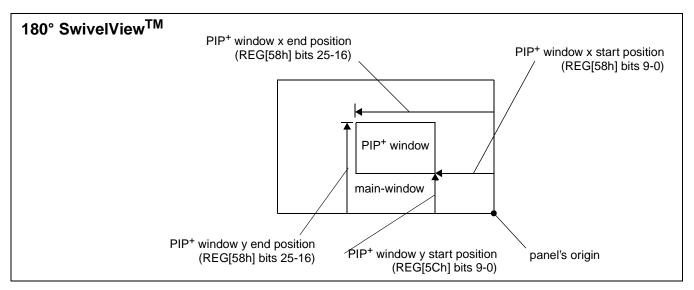


Figure 8-4: Picture-in-Picture Plus with SwivelView 180° enabled

SwivelView 180° is a mode in which both the main and PIP⁺ windows are rotated 180° counter-clockwise when shown on the panel. The images for each window are typically placed consecutively, with the main window image starting at address 0 and followed by the PIP⁺ window image. In addition, both images must start at addresses which are dword-aligned (the last two bits of the starting address must be 0).

Note

It is possible to use the same image for both the main window and PIP⁺ window. To do so, set the PIP⁺ Line Address Offset register (REG[54h]) to the same value as the Main Window Line Address Offset register (REG[44h]).

Example 7: In SwivelView 180°, program the PIP+ window registers for a 320x240 panel at 4 bpp, with the PIP+ window positioned at SwivelView 180° coordinates (80, 60) with a width of 160 and a height of 120.

1. Determine the value for the PIP⁺ Window X Positions and PIP⁺ Window Y Positions registers. Let the top left corner of the PIP⁺ window be (x1, y1), and let the bottom right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP⁺ Window X Positions register sets the horizontal coordinates of the PIP⁺ window's bottom right and top left corner. The PIP⁺ Window Y Positions register sets the vertical coordinates of the PIP⁺ window's bottom right and top left corner.

The required values are calculated as follows:

```
X Start Position
      = (panel width - x^2 - 1) ÷ (32 ÷ bpp)
      = (320 - (80 + 160 - 1) - 1) \div (32 \div 4)
      = 10
      = 0Ah
Y Start Position
      = panel height - y2 - 1
      = 240 - (60 + 120 - 1) - 1
      = 60
      = 3Ch
X End Position
      = (panel width - x1 - 1) \div (32 \div bpp)
      =(320 - 80 - 1) \div (32 \div 4)
      = 29.875
      = 1Dh (truncated fractional part)
Y End Position
      = panel height - y1 - 1
      = 240 - 60 - 1
      = 179
      = B3h
```

Program the PIP⁺ Window X Positions register with the X Start Position in bits 9-0 and the X End Position in bits 25-16. REG[58h] is set to 001D000Ah. Program the PIP⁺ Window Y Positions register with the Y Start Position in bits 9-0 and the Y End Position in bits 25-16. REG[5Ch] is set to 00B3003Ch.

Due to truncation, the dimensions of the PIP⁺ window may have changed. Recalculate the PIP⁺ window width and height below:

```
PIP<sup>+</sup> Width
= ((REG[58h] bits 25:16) - (REG[58h] bits 9:0) + 1) × (32 ÷ bpp)
= (1Dh - 0Ah + 1) × (32 ÷ 4)
= 160 pixels

PIP Height
= (REG[5Ch] bits 25:16) - (REG[5Ch] bits 9:0) + 1
= B3h - 3Ch + 1
= 120 lines
```

2. Determine the PIP⁺ display start address.

The main window image must take up 320 x 240 pixels \times bpp \div 8 = 9600h bytes. If the main window starts at address 0h, then the PIP⁺ window can start at 9600h.

```
PIP<sup>+</sup> Stride

= image width × bpp ÷ 8

= 160 \times 4 \div 8

= 80

= 50h

PIP<sup>+</sup> display start address

= ((desired byte address + (PIP<sup>+</sup> Stride × (PIP<sup>+</sup> height - 1))

+ (PIP<sup>+</sup> width × bpp ÷ 8) + ((4 - (PIP width × bpp ÷ 8)) & 03h)) ÷ 4) - 1

= ((9600h + (80 × (120 - 1)) + (160 × 4 ÷ 8) + ((4 - (160 × 4 ÷ 8))&03h)) ÷ 4) - 1

= 11999

= 2EDFh
```

Program the PIP⁺ Display Start Address register. REG[50h] is set to 00002EDFh.

3. Determine the PIP⁺ line address offset.

```
number of dwords per line

= image width \div (32 \div bpp)

= 160 \div (32 \div 4)

= 20

= 14h
```

Program the PIP⁺ Line Address Offset register. REG[54h] is set to 00000014h.

4. Enable the PIP⁺ window.

Program the PIP⁺ Window Enable bit. REG[10h] bit 19 is set to 1.

8.2.4 SwivelView 270°

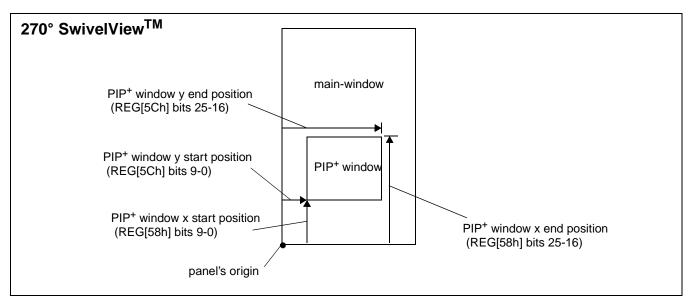


Figure 8-5: Picture-in-Picture Plus with SwivelView 270° enabled

SwivelView 270° is a mode in which both the main and PIP⁺ windows are rotated 270° counter-clockwise when shown on the panel. The images for each window are typically placed consecutively, with the main window image starting at address 0 and followed by the PIP⁺ window image. In addition, both images must start at addresses which are dwordaligned (the last two bits of the starting address must be 0).

Note

It is possible to use the same image for both the main window and PIP⁺ window. To do so, set the PIP⁺ Line Address Offset register (REG[54h]) to the same value as the Main Window Line Address Offset register (REG[44h]).

Example 8: In SwivelView 270°, program the PIP+ window registers for a 320x240 panel at 4 bpp, with the PIP+ window positioned at SwivelView 270° coordinates (60, 80) with a width of 120 and a height of 160.

1. Determine the value for the PIP⁺ Window X Positions and PIP⁺ Window Y Positions registers. Let the top left corner of the PIP⁺ window be (x1, y1), and let the bottom right corner be (x2, y2), where x2 = x1 + width - 1 and y2 = y1 + height - 1. The PIP⁺ Window X Positions register sets the vertical coordinates of the PIP⁺ window's top right and bottom left corner. The PIP⁺ Window Y Positions register sets the horizontal coordinates of the PIP⁺ window's top right and bottom left corner.

The required values are calculated as follows:

```
X Start Position
```

```
= panel width - y2 - 1
= 320 - (80 + 160 - 1) - 1
= 80
= 50h
```

Y Start Position

```
= x1 \div (32 \div bpp)
= 60 \div (32 \div 4)
= 7.5
= 07h (truncated fractional part)
```

X End Position

```
= panel width - y1 - 1
= 320 - 80 - 1
= 239
= EFh
```

Y End Position

```
= x2 \div (32 \div bpp)
= (60 + 120 - 1) \div (32 \div 4)
= 22.375
= 16h (truncated fractional part)
```

2. Program the PIP⁺ Window X Positions register with the X Start Position in bits 9-0 and the X End Position in bits 25-16. REG[58h] is set to 00EF0050h. Program the PIP⁺ Window Y Positions register with the Y Start Position in bits 9-0 and the Y End Position in bits 25-16. REG[5Ch] is set to 00160007h.

Due to truncation, the dimensions of the PIP⁺ window may have changed. Recalculate the PIP⁺ window width and height below:

```
PIP<sup>+</sup> Width
= ((REG[5Ch] \text{ bits } 25:16) - (REG[5Ch] \text{ bits } 9:0) + 1) \times (32 \div bpp)
= (16h - 07h + 1) \times (32 \div 4)
= 128 \text{ pixels } (\textbf{note that this is different from the desired width)}
PIP Height
= (REG[58h] \text{ bits } 25:16) - (REG[58h] \text{ bits } 9:0) + 1
= EFh - 50h + 1
```

3. Determine the PIP⁺ display start address.

= 160 lines

The main window image must take up $320 \times 240 \text{ pixels} \times \text{bpp} \div 8 = 9600 \text{h}$ bytes. If the main window starts at address 0h, then the PIP⁺ window can start at 9600h.

```
PIP<sup>+</sup> Stride

= image width × bpp ÷ 8

= 128 \times 4 \div 8

= 64

= 40h

PIP<sup>+</sup> display start address

= (desired byte address + ((PIP<sup>+</sup> height - 1) × PIP<sup>+</sup> Stride)) ÷ 4

= (9600h + ((160 - 1) \times 64)) \div 4

= 12144

= 2F70h
```

Program the PIP⁺ Display Start Address register. REG[50h] is set to 00002F70h.

4. Determine the PIP⁺ line address offset.

```
number of dwords per line
= image width ÷ (32 ÷ bpp)
= 128 ÷ (32 ÷ 4)
= 16
= 10h
```

Program the PIP⁺ Line Address Offset register. REG[54h] is set to 00000010h.

5. Enable the PIP⁺ window.

Program the PIP⁺ Window Enable bit. REG[10h] bit 19 is set to 1.

8.3 Limitations

8.3.1 SwivelView 0° and 180°

The PIP $^+$ Line Address Offset register (REG[54h]) requires the PIP $^+$ window image *width* to be a multiple of (32 \div bits-per-pixel). If this formula is not satisfied, then the PIP $^+$ Line Address Offset register must be programmed to the next larger value that satisfies the formula.

8.3.2 SwivelView 90° and 270°

The PIP⁺ Line Address Offset register (REG[54h]) requires the PIP⁺ window image *width* to be a multiple of (32 ÷ bits-per-pixel). If this formula is not satisfied, then the PIP⁺ Line Address Offset register must be programmed to the next larger value that satisfies the formula.

9 2D BitBLT Engine

BitBLT is an acronym for Bit Block Transfer. The 2D BitBLT Engine in the S1D13A05 is designed to increase the speed of the most common GUI operations by off-loading work from the CPU, reducing traffic on the system bus and freeing the CPU sooner for other tasks.

All BitBLTs require a destination - a place to write the data. Most BitBLTs have a source of data for the BitBLT and many also incorporate a pattern. The pattern, source, and destination operands are combined using logical AND, OR, XOR and NOT operations. The combining process is called a Raster Operation (ROP) and results in the final pixel data to be written to the destination address.

The S1D13A05 2D BitBLT engine supports a total of sixteen ROPs and works at 8 bpp and 16 bpp color depths. This section describes the BitBLT registers and provides some sample BitBLT operations.

9.1 Registers

The S1D13A05 BitBLT registers are located 8000h bytes from the start of S1D13A05 address space. The registers are labelled, according to their byte offset, as REG[8000h] through REG[8024h]. The following is a description of all BitBLT registers.

BitBLT Control Register REG[8000h] Default = 00000000h Read/Write												Vrite			
						n/a							Color Format Select	Dest Linear Select	Source Linear Select
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							n/a								BitBLT Enable (WO)
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Color Format Select

The Color Format Select bit indicates to the BitBLT engine what color depth to assume for the BitBLT operation. The BitBLT engine uses this information to set the step size for internal counters.

When this bit = 0, 8 bpp is selected and when this bit = 1, 16 bpp is selected.

Destination Linear Select

The Destination Linear Select bit determines how the BitBLT destination address pointer is updated when the BitBLT reaches the end of a row.

When the end of a row is reached and rectangular is selected the destination address is updated to point to the beginning of the next row of a rectangular area. The offset to the start of the next row is contained in the BitBLT Memory Address Offset register (REG[8014h]).

When the end of a row is reached and destination linear is selected the destination address is updated to the next available memory offset. The result is data which is jammed together with one row immediately following the next in display memory. This is useful when it is desired to compactly save a rectangular area into off screen memory.

When this bit = 0, the BitBLT destination is stored as a rectangular region of memory. When this bit = 1, the BitBLT destination is stored as a contiguous linear block of memory.

Source Linear Select

The Source Linear Select bit determines how the source address pointer is updated when the BitBLT reaches the end of a row.

When the end of a row is reached and rectangular is selected the source address is updated to point to the beginning of the next row of a rectangular area. The offset to the start of the next row is contained in the BitBLT Memory Address Offset register (REG[8014h]).

When the end of a row is reached and source linear is selected the source address is updated to the next available memory offset. The result is data, which was jammed together with one row immediately following the next in display memory, can now be expanded back to a rectangular area.

When this bit = 0, the BitBLT source is stored as a rectangular region of memory. When this bit = 1, the BitBLT source is stored as a contiguous linear block of memory.

BitBLT Enable

This bit is write only.

Setting this bit to 1 begins the 2D BitBLT operation. This bit must not be set to 0 while a BitBLT operation is in progress.

Note

To determine the status of a BitBLT operation use the BitBLT Busy Status bit (REG[8004h] bit 0).

BitBLT Status Regi	ister								
REG[8004h]	REG[8004h] Default = 00000000h Read Only								
n/a	Number of Used FIFO Entries		n/a		Numb	er of Free	FIFO Ent	ries (0 mean	ns full)
31 30 29	28 27 26 25 24	23	22	21	20	19	18	17	16
	n/a		FIFO Not Empty	FIFO Half Full	FIFO Full Status		n/a		BitBLT Busy Status
15 14 13	12 11 10 9 8	7	6	5	4	3	2	1	0

Number of Used FIFO Entries

This is a read-only status.

This field indicates the minimum number of FIFO entries currently in use. If these bits return a 0, the FIFO is empty.

Number of Free FIFO Entries

This is a read-only status bit

This field indicates the number of empty FIFO entries available. If these bits return a 0, the FIFO is full.

FIFO Not-Empty

This is a read-only status bit.

When this bit = 0, the BitBLT FIFO is empty. When this bit = 1, the BitBLT FiFO has at least one data. To reduce system latency, software can monitor this bit prior to a BitBLT read burst operation.

The following table shows the number of words available in the BitBLT FIFO under different status conditions.

BitBLT FIFO Full Status (REG[8004h] Bit 4)	BitBLT FIFO Half Full Status (REG[8004h] Bit 5)	BitBLT FIFO Not Empty Status (REG[8004h] Bit 6)	Number of Words available in BitBLT FIFO
0	0	0	0
0	0	1	1 to 6
0	1	1	7 to 14
1	1	1	15 to 16

Table 9-1: BitBLT FIFO Words Available

BitBLT FIFO Half Full Status

This is a read-only status bit.

When this bit = 1, the BitBLT FIFO is half full or greater than half full. When this bit = 0, the BitBLT FIFO is less than half full.

BitBLT FIFO Full Status

This is a read-only status bit.

When this bit = 1, the BitBLT FIFO is full. When this bit = 0, the BitBLT FIFO is not full.

BitBLT Busy Status

This bit is a read-only status bit.

When this bit = 1, the BitBLT operation is in progress. When this bit = 0, the BitBLT operation is complete.

Note

During a BitBLT Read operation, the BitBLT engine does not attempt to keep the FIFO full. If the FIFO becomes full, the BitBLT operation stops temporarily as data is read out of the FIFO. The BitBLT will restart only when less than 14 values remain in the FIFO.

BitBL REG[8	T Com r 3008h]	nand F	_	r lt = 000	000001	า								Read/V	Vrite
					n	/a						Bit	BLT ROP	Code bits 3	3-0
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					n	/a						Bi	tBLT Ope	ration bits 3	-0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

BitBLT ROP Code

The BitBLT ROP Code specifies the Raster Operation to be used for Write and Move Bit-BLTs. In addition, for Color Expansion, the BitBLT ROP Code bits 2-0 specify the start bit position for Color Expansion BitBLTs.

Table 9-2: BitBLT ROP Code/Color Expansion Function Selection

BitBLT ROP Code Bits [3:0]	Boolean Function for Write BitBLT and Move BitBLT	Boolean Function for Pattern Fill	Start Bit Position for Color Expansion
0000	0 (Blackness)	0 (Blackness)	bit 0
0001	~S . ~D or ~(S + D)	~P . ~D or ~(P + D)	bit 1
0010	~S . D	~P . D	bit 2
0011	~S	~P	bit 3
0100	S . ~D	P.~D	bit 4
0101	~D	~D	bit 5
0110	S^D	P^D	bit 6
0111	~S + ~D or ~(S . D)	~P + ~D or ~(P . D)	bit 7
1000	S.D	P . D	bit 0
1001	~(S ^ D)	~(P ^ D)	bit 1
1010	D	D	bit 2
1011	~S + D	~P + D	bit 3
1100	S	Р	bit 4
1101	S + ~D	P + ~D	bit 5
1110	S + D	P + D	bit 6
1111	1 (Whiteness)	1 (Whiteness)	bit 7

Note

S = Source, D = Destination, P = Pattern.

~ = NOT, . = Logical AND, + = Logical OR, ^ = Logical XOR

BitBLT Operation

The BitBLT Operation selects which BitBLT operation performed. The following table lists the available BitBLT operations.

Table 9-3: BitBLT Operation Selection

BitBLT Operation Bits [3:0]	BitBLT Operation
	Write BitBLT with ROP
0000	This operation refers to BitBLTs where data is to be transferred from system memory to display memory
0004	Read BitBLT
0001	This operation refers to BitBLTs where data is to be transferred from display memory to system memory
0010	Move BitBLT in positive direction with ROP
0010	This operation is used to transfer data from display memory to display memory
0011	Move BitBLT in negative direction with ROP
0011	This operation is used to transfer data from display memory to display memory
	Transparent Write BitBLT
0100	Like the Write BitBLT this operation is used when transferring data from system memory to display memory, the difference is that destination pixels will be left "as is" when source pixels of a specified color are encountered.
	Transparent Move BitBLT in positive direction
0101	As with the Move BitBLTs this operation is used to transfer data from display memory to display memory. The difference is that destination pixels will be left "as is" when source pixels of a specified color are encountered.
0110	Pattern Fill with ROP
0110	Fills the specified area of display memory with a repeating pattern stored in display memory.
	Pattern Fill with transparency
0111	As with the Pattern Fill, this BitBLT fills a specified area of display memory with a repeating pattern, destination pixels will be left "as is" when source pixels of a specified color are encountered.
	Color Expansion
1000	This BitBLT expands the bits of the source data into full pixels at the destination. If a source bit is 0 the destination pixel will be background color and if the source bit is 1 the destination pixel will be of foreground color. The source data for Color Expansion BitBLTs is always system memory.
	Color Expansion with transparency
1001	Like the Color Expansion BitBLT, this operations expands each bit of the source data to occupy a full destination pixel. The difference, is that destination pixels corresponding to source bits of 0 will be left "as is". The data source is system memory
	Move BitBLT with Color Expansion
1010	This BitBLT works the same as the Color Expansion BitBLT however the source of the BitBLT is display memory.
	Move BitBLT with Color Expansion and transparency
1011	This BitBLT works the same as the Color Expansion with Transparency BitBLT however the source of the BitBLT is display memory.
4455	Solid Fill BitBLT
1100	Use this BitBLT to fill a given area with one solid color.
Other combinations	Reserved

	T Sour	ce Star			•										
REG[8	300Ch]		Defau	ılt = 00	000000	0h								Read/\	Vrite
					n/a						BitB	LT Source	Start Add	dress bits 2	0-16
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						BitBLT	Source Sta	rt Address	bits 15-0						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

BitBLT Source Start Address

This register has multiple meanings depending on the BitBLT operation being performed. It can be either:

- the start address in display memory of the source data for BitBLTs where the source is display memory (i.e. Move BitBLTs).
- in pattern fill operations, the BitBLT Source Start Address determines where in the pattern to begin the BitBLT operation and is defined by the following equation:

 Value programmed to the Source Start Address Register =

Pattern Base Address + Pattern Line Offset + Pixel Offset.

• the data alignment for 16 bpp BitBLTs where the source of BitBLT data is the CPU (i.e. Write BitBLTs).

The following table shows how Source Start Address Register is defined for 8 and 16 bpp color depths.

Table 9-4: BitBLT Source Start Address Selection

Color Format	Pattern Base Address[20:0]	Pattern Line Offset[2:0]	Pixel Offset[3:0]
8 bpp	BitBLT Source Start Address[20:6]	BitBLT Source Start Address[5:3]	BitBLT Source Start Address[2:0]
16 bpp	BitBLT Source Start Address[20:7]	BitBLT Source Start Address[6:4]	BitBLT Source Start Address[3:0]

BitBL REG[8	T Desti 3010h]	nation		Addres : lt = 000	_									Read/V	Vrite
					n/a						BitBL	T Destinati	on Start A	ddress bits	20-16
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						BitBLT De	stination S	Start Addre	ss bits 15-	0					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

BitBLT Destination Start Address

This register specifies the initial destination address for BitBLT operations. For rectangular destinations this address represents the upper left corner of the BitBLT rectangle. If the operation is a Move BitBLT in a Negative Direction, these bits define the address of the lower right corner of the rectangle.

BitBL REG[8	T Mem 3014h]	ory Ad		Offset F It = 000	_									Read/V	Vrite
							1	n/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n/a						BitB	LT Memor	y Address	Offset bits	s 10-0			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

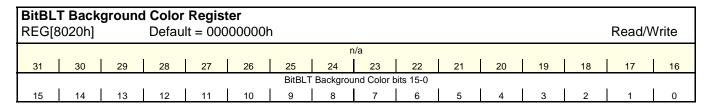
BitBLT Memory Address Offset

This register specifies the 11-bit address offset from the starting word of line n to the starting word of line n + 1. The offset value is only used for address calculation when the BitBLT is configured as rectangular.

	BitBLT Width Register REG[8018h] Default = 00000000h Read/Write														
	n/a														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a BitBLT Width bits 9-0															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

BitBLT Width

This register specifies the width of a BitBLT in pixels - 1.


BitBLT width (in pixels) = REG[8018h] + 1

BitBLT Height Register													
REG[801Ch] Default = 000000000	า						Read/V	Vrite					
n/a													
31 30 29 28 27 26	25 24	23	22 21	20	19	18	17	16					
n/a			BitBLT I	Height bits 9-0									
15 14 13 12 11 10	9 8	7	6 5	4	3	2	1	0					

BitBLT Height

This register specifies the height of the BitBLT in lines - 1.

BitBLT height (in lines) = REG[801Ch] + 1

BitBLT Background Color

This register specifies either:

• the BitBLT background color for Color Expansion

or

• the key color for Transparent BitBLT. For 8 bpp BitBLTs, bits 7-0 are used to specify the key color and for 16 bpp BitBLTs, bits 15-0 are used.

BitBLT Foreground Color Register REG[8024h] Default = 00000000h Read/Write															
	n/a														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BitBLT Foreground Color bits 15-0															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

BitBLT Foreground Color

This register specifies the foreground color for Color Expansion or Solid Fill BitBLTs. For 8 bpp BitBLTs, bits 7-0 are used to specify the color and for 16 bpp BitBLTs, bits 15-0 are used.

2D Accelerator (BitBLT) Data Memory Mapped Region Register AB16-AB0 = 10000h-1FFFEh, even addresses Read/Write															
BitBLT Data bits 31-16															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BitBLT Data bits 15-0															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

BitBLT Data bits

This register is used by the local CPU to send data to the BitBLT engine for Write and Color Expansion BitBLTs and is used to read data from the BitBLT engine for Read BitBLTs. The register should be treated as any other register it is however loosely decoded from 10000h to 1FFFEh.

Note

The BitBLT data registers are 32 bits wide but are accessed on WORD boundaries using 16 bit accesses. Byte access to the BitBLT data registers is not allowed.

Note

Accesses to this register, other than for purposes of a BitBLT operation may cause the 13A05 to stop responding and the system to hang.

9.2 BitBLT Descriptions

The S1D13A05 supports 13 fundamental BitBLT operations:

- Write BitBLT with ROP
- Read BitBLT
- Move BitBLT in positive direction with ROP
- Move BitBLT in negative direction with ROP
- Transparent Write BitBLT
- Transparent Move BitBLT in positive direction
- · Pattern Fill with ROP
- Pattern Fill with Transparency
- Color Expansion
- Color Expansion with Transparency
- Move BitBLT with Color Expansion
- Move BitBLT with Color Expansion and Transparency
- Solid Fill

Most of the 13 operations are self completing. This means once the BitBLT operation begins it completes without further assistance from the local CPU. No data transfers are required to or from the local CPU. Five BitBLT operations (Write BitBLT with ROP, Transparent Write BitBLT, Color Expansion, Color Expansion with Transparency, Read BitBLT) require data to be written to/read from the BitBLT engine. This data must be transferred one word (16-bits) at a time. This does not imply only 16-bit CPU instructions are acceptable. If a system is able to separate one DWORD write into two WORD writes and the CPU writes the low word before the high word, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instructions are required.

The data is not directly written to/read from the display buffer. It is written to/read from the BitBLT FIFO through the 64K byte BitBLT aperture specified at the address of REG[10000h]. The 16 word FIFO can be written to only when not full and can be read from only when not empty. Failing to monitor the FIFO status can result in a BitBLT FIFO overflow or underflow.

While the FIFO is being written to by the CPU, it is also being emptied by the S1D13A05. If the S1D13A05 empties the FIFO faster than the CPU can fill it, it may not be possible to cause an overflow/underflow. In these cases, performance can be improved by not monitoring the FIFO status. However, this is very much platform dependent and must be determined for each system.

9.2.1 Write BitBLT with ROP

Write BitBLTs increase the speed of transferring data from system memory to the display buffer. The Write BitBLT with ROP accepts data from the CPU and *writes* it into display memory. This BitBLT is typically used to copy a bitmap image from system memory to the display buffer.

Write BitBLTs support 16 ROPs, the most frequently used being ROP 0Ch (Copy Source to Destination). Write BitBLTs support both rectangular and linear destinations. Using a linear destination it is possible to move an image to off screen memory in a compact format for later restoration using a Move BitBLT.

During a Write BitBLT operation the BitBLT engine expects to receive a particular number of WORDs and it is the responsibility of the CPU to provide the required amount of data.

When performing BitBLT at 16 bpp color depth the number of WORDS to be sent is the same as the number of pixels to be transferred as each pixel is one WORD wide. The number of WORD writes the BitBLT engine expects is calculated using the following formula.

```
WORDS = Pixels
= BitBLTWidth × BitBLTHeight
```

When the color depth is 8 bpp the formula must take into consideration that the BitBLT engine accepts only WORD accesses and each pixel is one BYTE. This may lead to a different number of WORD transfers than there are pixels to transfer.

The number of WORD accesses is dependant on the position of the first pixel within the first WORD of each row. Is the pixel stored in the low byte or the high byte of the WORD? This aspect of the BitBLT is called phase and is determined as follows:

Source phase is 0 when the first pixel is in the low byte and the second pixel is in the high byte of the WORD. When the source phase is 0, bit 0 of the Source Start Address Register is 0. The Source Phase is 1 if the first pixel of each row is contained in the high byte of the WORD, the contents of the low byte are ignored. When the source phase is 1, bit 0 of the Source Start Address Register is set.

Depending on the Source Phase and the BitBLT Width, the last WORD may contain only one pixel. In this case it is always in the low byte. The number of WORD writes the BitBLT engine expects for 8 bpp color depths is shown in the following formula.

```
WORDS = ((BitBLTWidth + 1 + SourcePhase) \div 2) \times BitBLTHeight
```

The BitBLT engine requires this number of WORDS to be sent from the local CPU before it will end the Write BitBLT operation.

Note

The BitBLT engine counts WORD writes made to the BitBLT register space. This does not imply only 16-bit CPU instructions are acceptable. If a system is able to separate one DWORD write into two WORD writes **and** the CPU writes the low word before the high word, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instructions are required.

Example 9: Write a 100 x 20 rectangle at the screen coordinates x = 25, y = 38 using a 320x240 display at a color depth of 8 bpp.

1. Calculate the destination address (upper left corner of the screen BitBLT rectangle) using the following formula.

```
DestinationAddress = (y \times ScreenStride) + (x \times BytesPerPixel)
= (38 \times 320) + (25 \times 1)
= 12185
= 2F99h
```

where:

BytesPerPixel = 1 for 8 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixel = 320 for 8 bpp

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 2F99h.

- 2. Program the BitBLT Width Register to 100 1. REG[8018h] is set to 63h (99 decimal).
- 3. Program the BitBLT Height Register to 20 1. REG[801Ch] is set to 13h (19 decimal).
- 4. Program the Source Phase in the BitBLT Source Start Address Register. In this example the data is WORD aligned, so the source phase is 0. REG[800Ch] is set to 00h.
- 5. Program the BitBLT Operation Register to select the Write BitBLT with ROP. REG[8008h] bits 3-0 are set to 0h.
- 6. Program the BitBLT ROP Code Register to select Destination = Source. REG[8008h] bits 19-16 are set to 0Ch.
- 7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18 is set to 0.
- 8. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS:

REG[8014h] is set to A0h.

9. Calculate the number of WORDS the BitBLT engine expects to receive.

WORDS
$$= ((BLTWidth + 1 + SourcePhase) \div 2) \times BLTHeight$$
$$= (100 + 1) \div 2 \times 20$$
$$= 1000$$
$$= 3E8h$$

10. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8004h] bit 0 returns a 1.

11. Prior to writing any data to the BitBLT FIFO, confirm the BitBLT FIFO is not full (REG[8004h] bit 4 returns a 0).

If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returns a 0, the FIFO is empty. Write up to 16 WORDS to the BitBLT data register area.

If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returns a 1 and the BitBLT FIFO Half Full Status (REG[8004h] bit 5) returns a 0 then you can write up to 8 WORDS.

If the BitBLT FIFO Full Status returns a 1, do not write to the BitBLT FIFO until it returns a 0.

The following table summarizes how many words can be written to the BitBLT FIFO.

BitBL	Word Writes		
FIFO Not Empty Status	Available		
0	0	0	16
1	0	0	8
1	1	0	up to 8
1	1	1	0 (do not write)

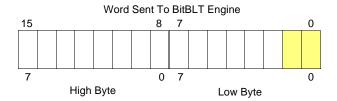
Table 9-5: Possible BitBLT FIFO Writes

Note

The sequence of register initialization is irrelevant as long as all required registers are programmed before the BitBLT is started.

9.2.2 Color Expansion BitBLT

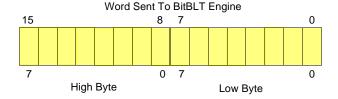
Similar to the Write BitBLT, the Color Expansion BitBLT requires the CPU to feed data to the BitBLT data register It differs in that bits set to one in the source data becomes a complete pixel of foreground color. Source bits set to zero are converted to a pixel of background color. The intended use of this BitBLT operation is to increase the speed of writing text to display memory. As with the Write BitBLT, all data sent to the BitBLT engine must be WORD (16-bit) writes.


The BitBLT engine expands first the low byte, then the high byte starting at bit 7 of each byte. The start byte of the first WORD to be expanded and the start bit position within this byte must be specified. The start byte position is selected by setting source address bit 0 to 0 to start expanding the low byte or 1 to start expanding the high byte.

Partially "masked" color expansion BitBLTs can be used when drawing a portion of a pattern (i.e. a portion of a character) on the screen. The following examples illustrate how one WORD is expanded using the Color Expansion BitBLT.

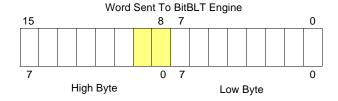
1. To expand bits 0-1 of the word:

Source Address = 0 Start Bit Position = 1 BitBLT Width = 2


The following bits are expanded.

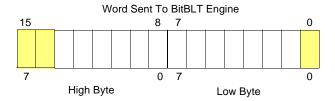
2. To expand bits 0-15 of the word (entire word)

Source Address = 0 Start Bit Position = 7 (bit seven of the low byte) BitBLT Width = 16


The following bits are expanded.

3. To expand bits 8-9 of the word

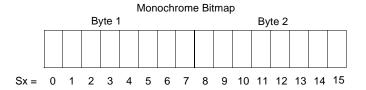
Source Address = 1 Start Bit Position = 1 BitBLT Width = 2


The following bits are expanded.

4. To expand bits 0,15-14 of the word

Source Address = 0 Start Bit Position = 0 BitBLT Width = 3

The following bits are expanded.



All subsequent WORDS in one BitBLT line are then serially expanded starting at bit 7 of the low byte until the end of the BitBLT line. All unused bits in the last WORD are discarded. It is extremely important that the exact number of WORDS is provided to the BitBLT engine. The number of WORDS is calculated from the following formula. This formula is valid for all color depths (8/16 bpp).

WORDS =
$$((Sx MOD 16 + BitBLTWidth + 15) \div 16) \times BitBLTHeight$$

where:

Sx is the X coordinate of the starting pixel in a word aligned monochrome bitmap.

Example 10: Color expand a rectangle of 12 x 18 starting at the coordinates Sx = 125, Sy = 17 using a 320x240 display at a color depth of 8 bpp.

This example assumes a monochrome, WORD aligned bitmap of dimensions 300×600 with the origin at an address A. The color expanded rectangle will be displayed at the screen coordinates X = 20, Y = 30. The foreground color corresponds to the LUT entry at index 134, the background color to index 124.

1. First we need to calculate the address of the WORD within the monochrome bitmap containing the pixel x = 125, y = 17.

```
SourceAddress = BitmapOrigin + (y × SourceStride) + (x ÷ 8)

= A + (Sy × SourceStride) + (Sx ÷ 8)

= A + (17 × 38) + (125 ÷ 8)

= A + 646 + 15

= A + 661

where:

SourceStride = (BitmapWidth + 15) ÷ 16

= (300 + 15) ÷ 16

= 19 WORDS per line

= 38 BYTES per line
```

2. Calculate the destination address (upper left corner of the screen BitBLT rectangle) using the following formula.

```
DestinationAddress = (Y \times ScreenStride) + (X \times BytesPerPixel)
= (30 \times 320) + (20 \times 1)
= 9620
= 2594h
```

where:

BytesPerPixel = 1 for 8 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixel = 320 for 8 bpp

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 2594h.

- 3. Program the BitBLT Width Register to 12 1. REG[8018h] is set to 0Bh (11 decimal).
- 4. Program the BitBLT Height Register to 18 1. REG[801Ch] is set to 11h (17 decimal).
- 5. Program the Source Phase in the BitBLT Source Start Address Register. In this example the source address equals A + 661 (odd), so REG[800Ch] is set to 1.
 - Since only bit 0 flags the source phase, more efficient code would simply write the low byte of the SourceAddress into REG[800Ch] directly -- not needing to test for an odd/even address. Note that in 16 bpp color depths the Source address is guaranteed to be even.
- 6. Program the BitBLT Operation Register to select the Color Expand BitBLT. REG[8008h] bits 3-0 are set to 8h.

7. Program the Color Expansion Register. The formula for this example is as follows.

REG[8008h] is set to 2h.

- 8. Program the Background Color Register to the background color. REG[8020h] is set to 7Ch (124 decimal).
- 9. Program the Foreground Color Register to the foreground color. REG[8024h] is set to 86h (134 decimal).
- 10. Program the BitBLT Color Format Register for 8 bpp operation. REG[8000h] bit 18 is set to 0.
- 11. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride
$$\div$$
 2
= 320 \div 2
= A0h

REG[8014h] is set to A0h.

12. Calculate the number of WORDS the BitBLT engine expects to receive.

First, the number of WORDS in one BitBLT line must be calculated as follows.

WordsOneLine =
$$((125 \text{ MOD } 16) + 12 + 15) \div 16$$

= $(13 + 12 + 15) \div 16$
= $40 \div 16$
= 2

Therefore, the total WORDS the BitBLT engine expects to receive is calculated as follows.

WORDS = WordsOneLine
$$\times$$
 18
= 2×18
= 36

13. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8004h] bit 0 returns a 1.

14. Prior to writing all WORDS to the BitBLT FIFO, confirm the BitBLT FIFO is not full (REG[8004h] bit 4 returns a 0). One WORD expands into 16 pixels which fills all 16 FIFO words in 16 bpp or 8 FIFO words in 8 bpp.

The following table summarizes how many words can be written to the BitBLT FIFO.

BitBLT Status Register (REG[8004h]) 8 bpp Word 16 bpp Word FIFO Half Full Status FIFO Full Status Writes Available Writes Available FIFO Not Empty Status 2 0 0 0 1 1 1 0 0 (do not write) 0 (do not write) 1 1 1

Table 9-6: Possible BitBLT FIFO Writes

Note

The sequence of register setup is irrelevant as long as all required registers are programmed before the BitBLT is started.

9.2.3 Color Expansion BitBLT With Transparency

This BitBLT operation is virtually identical to the Color Expand BitBLT, the difference is in how background bits are handled. Bits in the source bitmap which are set to zero result in the destination pixel remaining untouched. Bits set to one are expanded to the foreground color.

Use this BitBLT operation to overlay text onto any background while leaving the background intact.

Refer to the Color Expansion BitBLT for sample calculations and keep the following points in mind:

- Program the BitBLT operation bits, REG[8008h] bits 3-0, to 09h instead of 08h.
- Setting a background color, REG[8020h], is not required.

9.2.4 Solid Fill BitBLT

The Solid Fill BitBLT fills a rectangular area of the display buffer with a solid color. This operation is used to paint large screen areas or to set areas of the display buffer to a given value.

This BitBLT operation is self completing. After setting the width, height, destination start position and (foreground) color the BitBLT engine is started. When the region of display memory is filled with the given color the BitBLT engine will automatically stop.

Example 11: Fill a red 9 x 301 rectangle at the screen coordinates x = 100, y = 10 using a 320x240 display at a color depth of 16 bpp.

1. Calculate the destination address (upper left corner of the destination rectangle) using the following formula.

DestinationAddress =
$$(y \times ScreenStride) + (x \times BytesPerPixel)$$

= $(10 \times (320 \times 2)) + (100 \times 2)$
= 6600
= $19C8h$

where:

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixel = 640 for 16 bpp.

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 19C8h.

- 2. Program the BitBLT Width Register to 9 1. REG[8018h] is set to 08h.
- 3. Program the BitBLT Height Register to 301 1. REG[801Ch] is set to 12Ch (300 decimal).
- 4. Program the BitBLT Foreground Color Register. REG[8024h] is set to F800h (Full intensity red in 16 bpp is F800h).
- 5. Program the BitBLT Operation Register to select Solid Fill. REG[8008h] bits 3-0 are set to 0Ch.
- 6. Program the BitBLT Color Format Register for 16 bpp operations. REG[8000h] bit 18 is set to 1.
- 7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

REG[8014h] is set to 0140h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note

The sequence of register setup is irrelevant as long as all required registers are programmed before the BitBLT is started.

9.2.5 Move BitBLT in a Positive Direction with ROP

The Move BitBLT is used to copy one area of display memory to another area in display memory.

The source and the destination areas of the BitBLT may be either rectangular or linear. Performing a rectangular to rectangular Move BitBLT creates an exact copy of one portion of video memory at the second location. Selecting a rectangular source to linear destination would be used to compactly store an area of displayed video memory into non-displayed video memory. Later, the area could be restored by performing a linear source to rectangular destination Move BitBLT.

The Move BitBLT in a Positive Direction with ROP is a self completing operation. Once the width, height and the source and destination start addresses are setup and the BitBLT is started the BitBLT engine will complete the operation automatically.

Should the source and destination areas overlap a decision has to be made as to whether to use a Positive or Negative direction so that source data is not overwritten by the move before it is used. Refer to Figure 9-1: to see when to make the decision to switch to the Move BitBLT in a Negative direction. When the destination area overlaps the original source area and the destination address is greater then the source address, use the Move BitBLT in Negative Direction with ROP.

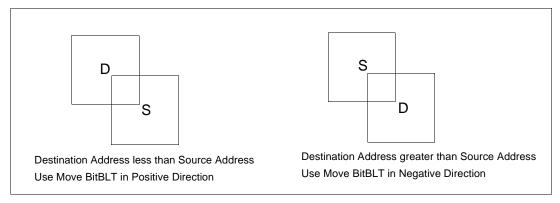


Figure 9-1: Move BitBLT Usage

Example 12: Copy a 9 x 101 rectangle at the screen coordinates x = 100, y = 10 to screen coordinates x = 200, y = 20 using a 320x240 display at a color depth of 16 bpp.

1. Calculate the source and destination addresses (upper left corners of the source and destination rectangles), using the following formula.

SourceAddress =
$$(y \times ScreenStride) + (x \times BytesPerPixel)$$

= $(10 \times (320 \times 2)) + (100 \times 2)$
= 6600
= $19C8h$
DestinationAddress = $(y \times ScreenStride) + (x \times BytesPerPixel)$

$$s = (y \times ScreenStride) + (x \times BytesPerPixel)$$

= $(20 \times (320 \times 2)) + (200 \times 2)$
= 13200
= $3390h$

where:

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixel = 640 for 16 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 19C8h.

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 3390h.

- 2. Program the BitBLT Width Register to 9 1. REG[8018h] is set to 08h.
- 3. Program the BitBLT Height Register to 101 1. REG[801Ch] is set to 64h (100 decimal).
- 4. Program the BitBLT Operation Register to select the Move BitBLT in Positive Direction with ROP. REG[8008h] bits 3-0 are set to 2h.
- 5. Program the BitBLT ROP Code Register to select Destination = Source. REG[8008h] bits 19-16 are set to 0Ch.
- 6. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[8000h] bit 18 is set to 1.
- 7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

REG[8014h] is set to 0140h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note

The sequence of register setup is irrelevant as long as all required registers are programmed before the BitBLT is started.

9.2.6 Move BitBLT in Negative Direction with ROP

The Move BitBLT in Negative Direction with ROP is similar to the Move BitBLT in Positive direction. Use this BitBLT operation when the source and destination BitBLT areas overlap and the destination address is greater then the source address. Refer to Figure 9-1: on page 84 to see when to make the decision to switch to the Move BitBLT in a Positive direction.

When using the Move BitBLT in Negative Direction it is necessary to calculate the addresses of the last pixels as opposed to the first pixels. This means calculating the addresses of the lower right corners as opposed to the upper left corners.

Example 13: Copy a 9 x 101 rectangle at the screen coordinates x = 100, y = 10 to screen coordinates X = 105, Y = 20 using a 320x240 display at a color depth of 16 bpp.

In the following example, the coordinates of the source and destination rectangles intentionally overlap.

1. Calculate the source and destination addresses (**lower right** corners of the source and destination rectangles) using the following formula.

SourceAddress

```
= ((y + \text{Height} - 1) \times \text{ScreenStride}) + ((x + \text{Width} - 1) \times \text{BytesPerPixel})
= ((10 + 101 - 1) \times (320 \times 2)) + ((100 + 9 - 1) \times 2)
= 70616
= 113D8h
```

DestinationAddress

```
= ((Y + \text{Height - 1}) \times \text{ScreenStride}) + ((X + \text{Width - 1}) \times \text{BytesPerPixel})
= ((20 + 101 - 1) \times (320 \times 2)) + ((105 + 9 - 1) \times 2)
= 77026
= 12\text{CE2h}
```

where:

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixel = 640 for 16 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 113D8h.

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 12CE2h.

- 2. Program the BitBLT Width Register to 9 1. REG[8018h] is set to 08h.
- 3. Program the BitBLT Height Register to 101 1. REG[801Ch] is set to 64h (100 decimal).
- 4. Program the BitBLT Operation Register to select the Move BitBLT in Negative Direction with ROP. REG[8008] bits 3-0 are set to 3h.
- 5. Program the BitBLT ROP Code Register to select Destination = Source. REG[8008h] bits 19-16 are set to 0Ch.

- 6. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[8000h] bit 18 is set to 1.
- 7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

```
BltMemoryOffset = ScreenStride ÷ 2
= 320
= 140h
```

REG[8014h] is set to 0140h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note

The sequence of register setup is irrelevant as long as all required registers are programmed before the BitBLT is started.

9.2.7 Transparent Write BitBLT

Transparent Write BitBLTs are similar to the Write BitBLT with ROP with two differences; first, a specified color in the source data leaves the destination pixel untouched and second ROPs are not supported.

This operation is used to copy a bitmap image from system memory to the display buffer with one source color treated as transparent. Pixels of the transparent color are not transferred. This allows fast display of non-rectangular or masked images. For example, consider a source bitmap having a red circle on a blue background. By selecting the blue as the transparent color and using the Transparent Write BitBLT on the whole rectangle, the effect is a BitBLT of the red circle only.

During a Transparent Write BitBLT operation the BitBLT engine expects to receive a particular number of WORDs and it is the responsibility of the CPU to provide the required amount of data.

When performing BitBLTs at 16 bpp color depth the number of WORDS to be sent is the same as the number of pixels as each pixel is one WORD wide. The number of WORD writes the BitBLT engine expects is calculated using the following formula.

When the color depth is 8 bpp the formula must take into consideration that the BitBLT engine accepts only WORD accesses and each pixel is one BYTE. This may lead to a different number of WORD transfers than there are pixels to transfer.

The number of WORD accesses is dependant on the position of the first pixel within the first WORD of each row. Is the pixel stored in the low byte or the high byte of the WORD? This aspect of the BitBLT is called phase and is determined as follows:

Source phase is 0 when the first pixel is in the low byte and the second pixel is in the high byte of the WORD. When the source phase is 0, bit 0 of the Source Start Address Register is 0. The Source Phase is 1 if the first pixel of each row is contained in the high byte of the WORD, the contents of the low byte are ignored. When the source phase is 1, bit 0 of the Source Start Address Register is set.

Depending on the Source Phase and the BitBLT Width, the last WORD may contain only one pixel. In this case it is always in the low byte. The number of WORD writes the BitBLT engine expects for 8 bpp color depths is shown in the following formula.

```
WORDS = ((BitBLTWidth + 1 + SourcePhase) \div 2) \times BitBLTHeight
```

Once the Transparent Write BitBLT begins, the BitBLT engine remains active until all pixels have been written. The BitBLT engine requires the correct number of WORDS to be sent from the local CPU before it ends the Transparent Write BitBLT operation.

Note

The BitBLT engine counts WORD writes made to the BitBLT register. This does not imply only 16-bit CPU instructions are acceptable. If a system is able to separate one DWORD write into two WORD writes **and** the CPU writes the low word before the high word, then 32-bit CPU instructions are acceptable. Otherwise, 16-bit CPU instructions are required.

Example 14: Write 100 x 20 pixels at the screen coordinates x = 25, y = 38 using a 320x240 display at a color depth of 8 bpp. Transparent color is high intensity blue (assume LUT Index 124).

1. Calculate the destination address (upper left corner of the screen BitBLT rectangle), using the formula:

```
DestinationAddress = (y \times ScreenStride) + (x \times BytesPerPixel)
= (38 \times 320) + (25 \times 1)
= 12185
= 2F99h
```

where:

BytesPerPixel = 1 for 8 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixel = 320 for 8 bpp

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 2F99h.

- 2. Program the BitBLT Width Register to 100 1. REG[8018h] is set to 63h (99 decimal).
- 3. Program the BitBLT Height Register to 20 1. REG[801Ch] is set to 13h (19 decimal).
- 4. Program the Source Phase in the BitBLT Source Start Address Register. In this example, the data is WORD aligned, so the source phase is 0. REG[800Ch] is set to 00h.

- 5. Program the BitBLT Operation Register to select Transparent Write BitBLT. REG[8008h] bits 3-0 are set to 4h.
- 6. Program the BitBLT Background Color Register to select transparent color. REG[8020h] is set to 7Ch (124 decimal).
- 7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18 is set to 0.
- 8. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride
$$\div$$
 2
= 320 \div 2
= 160
= A0h

REG[8014h] is set to 0A0h.

9. Calculate the number of WORDS the BitBLT engine expects to receive.

WORDS
$$= ((BLTWidth + 1 + SourcePhase) \div 2) \times BLTHeight$$
$$= (100 + 1 + 0) \div 2 \times 20$$
$$= 1000$$
$$= 3E8h$$

10. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8004h] bit 0 returns a 1.

11. Prior to writing any data to the BitBLT FIFO, confirm the BitBLT FIFO is not full (REG[8004h] bit 4 returns a 0).

If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returns a 0, the FIFO is empty. Write up to 16 WORDS to the BitBLT data register area.

If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returns a 1 and the BitBLT FIFO Half Full Status (REG[8004h] bit 5) returns a 0 then you can write up to 8 WORDS.

If the BitBLT FIFO Full Status returns a 1, do not write to the BitBLT FIFO until it returns a 0.

The following table summarizes how many words can be written to the BitBLT FIFO.

BitBl	Word Writes		
FIFO Not Empty Status	Available		
0	0	0	16
1	0	0	8
1	1	0	less than 8
1	1	1	0 (do not write)

Table 9-7: Possible BitBLT FIFO Writes

Note

The sequence of register setup is irrelevant as long as all required registers are programmed before the BitBLT is started.

9.2.8 Transparent Move BitBLT in Positive Direction

The Transparent Move BitBLT in Positive Direction combines the capabilities of the Move BitBLT with the ability to define a transparent color. Use this operation to copy a masked area of display memory to another area in display memory.

The source and the destination areas of the BitBLT may be either rectangular or linear. Performing a rectangular to rectangular Move BitBLT creates an exact copy of one portion of video memory at the second location. Selecting a rectangular source to linear destination would be used to compactly store an area of displayed video memory into non-displayed video memory. Later, the area could be restored by performing a linear source to rectangular destination Move BitBLT.

The transparent color is not copied during this operation, whatever pixel color existed in the destination will be there when the BitBLT completes. This allows fast display of non-rectangular images. For example, consider a source bitmap having a red circle on a blue background. By selecting the blue color as the transparent color and using the Transparent Move BitBLT on the whole rectangle, the effect is a BitBLT of the red circle only.

Note

The Transparent Move BitBLT is supported **only** in a positive direction.

Example 15: Copy a 9 x 101 rectangle at the screen coordinates x = 100, y = 10 to screen coordinates X = 200, Y = 20 using a 320x240 display at a color depth of 16 bpp. Transparent color is blue.

1. Calculate the source and destination addresses (upper left corners of the source and destination rectangles), using the formula:

```
SourceAddress = (y \times ScreenStride) + (x \times BytesPerPixel)
= (10 \times (320 \times 2)) + (100 \times 2)
= 6600
= 19C8h
DestinationAddress = (Y \times ScreenStride) + (X \times BytesPerPixel)
= (20 \times (320 \times 2)) + (200 \times 2)
= 13200
= 3390h
```

where:

BytesPerPixel = 2 for 16 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixel = 640 for 16 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 19C8h.

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 3390h.

- 2. Program the BitBLT Width Register to 9 1. REG[8018h] is set to 08h.
- 3. Program the BitBLT Height Register to 101 1. REG[801Ch] is set to 64h (100 decimal).

- 4. Program the BitBLT Operation Register to select the Transparent Move BitBLT in Positive Direction. REG[8008h] bits 3-0 are set to 05h.
- 5. Program the BitBLT Background Color Register to select blue as the transparent color. REG[8020h] is set to 001Fh (Full intensity blue in 16 bpp is 001Fh).
- 6. Program the BitBLT Color Format Register to select 16 bpp operations. REG[8000h] bit 18 is set to 1.
- 7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

```
BltMemoryOffset = ScreenStride ÷ 2
= 320
= 140h
```

REG[8014h] is set to 0140h.

8. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note

The order of register setup is irrelevant as long as all relevant registers are programmed before the BitBLT is initiated.

9.2.9 Pattern Fill BitBLT with ROP

The Pattern Fill BitBLT with ROP fills a specified area of display memory with a pattern. The pattern is repeated until the fill area is completely filled. The fill pattern is limited to an eight by eight pixel array and must be loaded to off-screen video memory before starting the BitBLT. The pattern can be logically combined with the destination using any of the 16 ROP codes, but typically the copy pattern ROP is used (ROP code 0Ch).

A pattern is defined to be an array of 8x8 pixels and the pattern data must be stored in consecutive bytes of display memory (64 consecutive bytes for 8 bpp color depths and 128 bytes for 16 bpp color depths). For 8 bpp color depths the pattern must begin on a 64 byte boundary, for 16 bpp color depths the pattern must begin on a 128 byte boundary.

This operation is self completing. Once the parameters have been entered and the BitBLT started the BitBLT engine will fill all of the specified memory with the pattern.

To fill an area using the pattern BitBLT, the BitBLT engine requires the location of the pattern, the destination rectangle position and size, and the ROP code. The BitBLT engine also needs to know which pixel from the pattern is the first pixel in the destination rectangle (the pattern start phase). This allows seamless redrawing of any part of the screen using the pattern fill.

Example 16: Fill a 100 x 150 rectangle at the screen coordinates x = 10, y = 20 with the pattern in off-screen memory at offset 3C000h using a 320x240 display at a color depth of 8 bpp. The first pixel (upper left corner) of the rectangle is the pattern pixel at x = 3, y = 4.

1. Calculate the destination address (upper left corner of the destination rectangle), using the formula:

```
DestinationAddress = (y \times ScreenStride) + (x \times BytesPerPixel)
= (20 \times 320) + (10 \times 1)
= 6410
= 190Ah
```

where:

BytesPerPixel = 1 for 8 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixels = 320 for 8 bpp

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 190Ah.

2. Calculate the source address. This is the address of the pixel in the pattern that is the origin of the destination fill area. The pattern begins at offset 240K, but the first pattern pixel is at x = 3, y = 4. Therefore, an offset within the pattern itself must be calculated.

SourceAddress

- $= PatternOffset + StartPatternY \times 8 \times BytesPerPixel + StartPatternX \times BytesPerPixel \\$
- $= 240K + (4 \times 8 \times 1) + (3 \times 1)$
- = 240K + 35
- = 245795
- = 3C023h

where:

BytesPerPixel = 1 for 8 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 3C023h.

- 3. Program the BitBLT Width Register to 100 1. REG[8018h] is set to 63h (99 decimal).
- 4. Program the BitBLT Height Register to 150-1. REG[801Ch] is set to 95h (149 decimal).
- 5. Program the BitBLT Operation Register to select the Pattern Fill with ROP. REG[8008h] bits 3-0 are set to 6h.
- 6. Program the BitBLT ROP Code Register to select Destination = Source. REG[8008h] bits 19-16 are set to 0Ch.
- 7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18 is set to 0.

8. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride
$$\div$$
 2
= 320 \div 2
= 160
= A0h

REG[8014h] is set to 00A0h.

9. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note

The sequence of register setup is irrelevant as long as all required registers are programmed before the BitBLT is started.

9.2.10 Pattern Fill BitBLT with Transparency

This operation is very similar to the Pattern Fill BitBLT with the difference being that one color can be specified to be transparent. Whenever the Transparent color is encountered in the pattern data the destination is left as is. This operation is useful to create hatched or striped patterns where the original image shows through the hatching.

The requirements for this BitBLT are the same as for the Pattern Fill BitBLT the only change in programming is that the BitBLT Operation field of REG[8008h] must be set to 07h and the BitBLT Background color register, REG[8020h] must be set to the desired color.

- Example 17: Fill a 100 x 150 rectangle at the screen coordinates x = 10, y = 20 with the pattern in off-screen memory at offset 3C000h using a 320x240 display at a color depth of 8 bpp. The first pixel (upper left corner) of the rectangle is the pattern pixel at x = 3, y = 4. Transparent color is blue (assumes LUT index 1).
- 1. Calculate the destination address (upper left corner of destination rectangle), using the formula:

DestinationAddress =
$$(y \times ScreenStride) + (x \times BytesPerPixel)$$

= $(20 \times 320) + (10 \times 1)$
= 6410
= $190Ah$

where:

BytesPerPixel = 1 for 8 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixels = 320 for 8 bpp

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 190Ah.

2. Calculate the source address. This is the address of the pixel in the pattern that is the origin of the destination fill area. The pattern begins at offset 240K, but the first pattern pixel is at x = 3, y = 4. Therefore, an offset within the pattern itself must be calculated.

SourceAddress

- = PatternOffset + StartPatternY × 8 × BytesPerPixel + StartPatternX × BytesPerPixel
- $= 240K + (4 \times 8 \times 1) + (3 \times 1)$
- = 240K + 35
- = 245795
- = 3C023h

where:

BytesPerPixel = 1 for 8 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 3C0023h.

- 3. Program the BitBLT Width Register to 100 1. REG[8018h] is set to 63h (99 decimal).
- 4. Program the BitBLT Height Register to 150-1. REG[801Ch] is set to 95h (149 decimal).
- 5. Program the BitBLT Operation Register to select the Pattern Fill BitBLT with Transparency. REG[8008h] bits 3-0 are set to 7h.
- 6. Program the BitBLT Background Color Register to select transparent color. This example uses blue (LUT index 1) as the transparent color. REG[8020h] is set to 01h.
- 7. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18 is set to 0.
- 8. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride
$$\div$$
 2
= 320 \div 2
= 160
= A0h

REG[8014h] is set to A0h.

9. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note

The sequence of register setup is irrelevant as long as all required registers are programmed before the BitBLT is started.

9.2.11 Move BitBLT with Color Expansion

The Move BitBLT with Color Expansion takes a monochrome bitmap as the source and color expands it into the destination. All bits set to one in the source are expanded to destination pixels of the selected foreground color. All bits set to zero in the source are expanded to pixels of the selected background color.

The Move BitBLT with Color Expansion is used to accelerate text drawing. A monochrome bitmap of a font, in off-screen video memory, occupies very little space and takes advantage of the hardware acceleration. Since the foreground and background colors are programmable, text of any color can be created.

The Move BitBLT with Color Expansion can move data from one rectangular area to another, or either the source or destination may be specified to be linear. Storing rectangular display data in linear format in off screen memory results in a tremendous space saving.

Example 18: Color expand a 9 x 16 rectangle using the pattern in off-screen memory at 3C000h and move it to the screen coordinates x = 200, y = 20. Assume a 320x240 display at a color depth of 16 bpp, Foreground color of black, and background color of white.

1. Calculate the destination and source addresses (upper left corner of the destination and source rectangles), using the formula.

```
DestinationAddress = (y \times ScreenStride) + (x \times BytesPerPixel)
= (20 \times (320 \times 2)) + (200 \times 2)
= 13200
= 3390h
```

where:

BytesPerPixel = 2 for 16 bpp

 $ScreenStride = DisplayWidthInPixels \times BytesPerPixels = 640 for 16 bpp$

Program the BitBLT Destination Start Address Register. REG[8010h] is set to 3390h.

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 3C000h.

- 2. Program the BitBLT Width Register to 9 1. REG[8018h] is set to 08h.
- 3. Program the BitBLT Height Register to 16 1. REG[801Ch] is set to 0Fh.
- 4. Program the BitBLT ROP Code/Color Expansion Register. REG[8008h] bits 19-16 are set to 7h.
- 5. Program the BitBLT Operation Register to select the Move BitBLT with Color Expansion. REG[8008h] bits 3-0 are set to 0Bh.
- 6. Program the BitBLT Foreground Color Register to select black (in 16 bpp black = 0000h). REG[8024h] is set to 0000h.

- 7. Program the BitBLT Background Color Register to select white (in 16 bpp white = FFFFh). REG[8024h] is set to FFFFh.
- 8. Program the BitBLT Color Format Select bit for 16 bpp operations. REG[8000h] bit 18 is set to 1.
- 9. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

```
BltMemoryOffset = ScreenStride ÷ 2
= 320
= 140h
```

REG[8014h] is set to 0140h.

10. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8000h] bit 0 is set to 1.

Note

The sequence of register setup is irrelevant as long as all required registers are programmed before the BitBLT is started.

9.2.12 Transparent Move BitBLT with Color Expansion

The Transparent Move BitBLT with Color Expansion is virtually identical to the Move BitBLT with Color Expansion. This operation expands bits set to one in the source bitmap to the foreground color in the destination. Bits set to zero in the source bitmap leave the corresponding destination pixel as is.

Setup and use this operation exactly as the Move BitBLT with Color Expansion.

9.2.13 Read BitBLT

This Read BitBLT increases the speed of transferring data from the video memory to system memory. This BitBLT complements the Write BitBLT and is typically used to save a part of the display buffer to the system memory. Once the Read BitBLT begins, the BitBLT engine remains active until all the pixels have been read.

During a Read BitBLT operation the BitBLT engine expects to send a particular number of WORDs to the CPU, and it is the responsibility of the CPU to read the required amount of data.

When performing BitBLT at 16 bpp color depth the number of WORDS to be sent is the same as the number of pixels to be transferred as each pixel is one WORD wide. The number of WORD writes the BitBLT engine expects is calculated using the following formula.

```
WORDS = Pixels
= BitBLTWidth × BitBLTHeight
```

When the color depth is 8 bpp the formula must take into consideration that the BitBLT engine accepts only WORD accesses and pixels are only one BYTE. This may lead to a different number of WORD transfers than there are pixels to transfer.

The number of WORD accesses is dependant on the position of the first pixel within the first WORD of each destination row. Is the pixel stored in the low byte or the high byte of the WORD? Read BitBLT phase is determined as follows:

Destination phase is 0 when the first pixel is in the low byte and the second pixel is in the high byte of the WORD. When the destination phase is 0, bit 0 of the Destination Start Address Register is 0. The destination phase is 1 if the first pixel of each destination row is contained in the high byte of the WORD, the contents of the low byte are ignored. When the destination phase is 1, bit 0 of the Destination Start Address Register is set.

Depending on the destination phase and the BitBLT width, the last WORD may contain only one pixel. In this case it is always in the low byte. The number of WORD writes the BitBLT engine expects for 8 bpp color depths is shown in the following formula.

```
WORDS = ((BitBLTWidth + 1 + DestinationPhase) \div 2) \times BitBLTHeight
```

The BitBLT engine requires this number of WORDS to be sent from the local CPU before it will end the Write BitBLT operation.

Example 19: Read 100 x 20 pixels at the screen coordinates x = 25, y = 38 and save to system memory. Assume a display of 320x240 at a color depth of 8 bpp.

1. Calculate the source address (upper left corner of the screen BitBLT rectangle), using the formula.

```
SourceAddress = (y \times ScreenStride) + (x \times BytesPerPixel)
= (38 \times 320) + (25 \times 1)
= 12185
= 2F99h
```

where:

BytesPerPixel = 1 for 8 bpp

ScreenStride = DisplayWidthInPixels × BytesPerPixels = 320 for 8 bpp

Program the BitBLT Source Start Address Register. REG[800Ch] is set to 2F99h.

- 2. Program the BitBLT Width Register to 100 1. REG[8018h] is set to 63h (99 decimal).
- 3. Program the BitBLT Height Register to 20 1. REG[801Ch] is set to 13h (19 decimal).

- 4. Program the Destination Phase in the BitBLT Destination Start Address Register. In this example, the data is WORD aligned, so the destination phase is 0. REG[8010h] is set to 00h.
- 5. Program the BitBLT Operation to select the Read BitBLT. REG[8008h] bits 3-0 are set to 1h.
- 6. Program the BitBLT Color Format Select bit for 8 bpp operations. REG[8000h] bit 18 is set to 0.
- 7. Program the BitBLT Memory Offset Register to the ScreenStride in WORDS.

BltMemoryOffset = ScreenStride
$$\div$$
 2
= 320 \div 2
= 160
= A0h

REG[8014h] is set to 0A0h.

8. Calculate the number of WORDS the BitBLT engine expects to receive.

WORDS =
$$((BLTWidth + 1 + DestinationPhase) \div 2) \times BLTHeight$$

= $(100 + 1 + 0) \div 2 \times 20$
= 1000
= $3E8h$

9. Program the BitBLT Destination/Source Linear Select bits for a rectangular BitBLT (BitBLT Destination Linear Select = 0, BitBLT Source Linear Select = 0).

Start the BitBLT operation. REG[8004h] bit 0 returns a 1.

10. Prior to reading from the BitBLT FIFO, confirm the BitBLT FIFO is not empty (REG[8004h] bit 4 returns a 1). If the BitBLT FIFO Not Empty Status (REG[8004h] bit 6) returns a 1 and the BitBLT FIFO Half Full Status (REG[8004h] bit 5) returns a 0 then you can read up to 8 WORDS. If the BitBLT FIFO Full Status returns a 1, read up to 16 WORDS. If the BitBLT FIFO Not Empty Status returns a 0 (the FIFO is empty), do not read from the BitBLT FIFO until it returns a 1.

The following table summarizes how many words can be read from the BitBLT FIFO.

BitBl	Word Reads		
FIFO Not Empty Status	FIFO Half Full Status	FIFO Full Status	Available
0	0	0	0 (do not read)
1	0	0	up to 8
1	1	0	8
1	1	1	16

Table 9-8: Possible BitBLT FIFO Reads

Note

The sequence of register initialization is irrelevant as long as all required registers are programmed before the BitBLT is started.

9.3 BitBLT Synchronization

A BitBLT operation can only be started if the BitBLT engine is not busy servicing another BitBLT. Before a new operation is started, software must confirm the BitBLT Busy Status bit (REG[8004h] bit 0) is set to zero. The status of this bit can either be tested **after** each BitBLT operation, or **before** each BitBLT operation.

Testing the BitBLT Status After

Testing the BitBLT Active Status after starting a new BitBLT is simpler and less prone to errors.

To test after each BitBLT operation, perform the following.

- 1. Program and start the BitBLT engine.
- 2. Wait for the current BitBLT operation to finish -- Poll the BitBLT Busy Status bit (REG[8004h] bit 0) until it returns a 0.
- 3. Continue with program execution.

Testing the BitBLT Status Before

Testing the BitBLT Active Status before starting a new BitBLT results in better performance, as both CPU and BitBLT engine can be running at the same time. This is most useful for BitBLTs that are self completing (once started they don't require any CPU assistance). While the BitBLT engine is busy, the CPU can do other tasks. To test before each BitBLT operation, perform the following.

- 1. Wait for the current BitBLT operation to finish -- Poll the BitBLT Busy Status bit (REG[8004h] bit 0) until it returns a 0.
- 2. Program and start the new BitBLT operation.
- 3. Continue with program execution (CPU and BitBLT engine work independently).

This approach can pose problems when mixing CPU and BitBLT access to the display buffer. For example, if the CPU writes a pixel while the BitBLT engine is running and the CPU writes a pixel before the BitBLT finishes, the pixel may be overwritten by the BitBLT. To avoid this scenario, always assure no BitBLT is in progress before accessing the display buffer with the CPU, or don't use the CPU to access the display buffer at all.

9.4 Known Limitations

The S1D13A05 BitBLT engine has the following limitations.

- The 2D Accelerator Data Memory Mapped register must not be accessed except during BitBLT operations. Read from the register only during Read BitBLT operations and write to the register only during Write and Color Expand BitBLTs. Accessing the register at any other time may result in S1D13A05 stopping to respond and the system to freeze.
- The Read and Write BitBLT operations are not available when the S1D13A05 is configured for the Redcap or Dragonball without DTACK host bus interfaces.
- A BitBLT operation cannot be terminated once it has been started.

9.5 Sample Code

Sample code demonstrating how to program the S1D13A05 BitBLT engine is provided in the files **A05src.zip**. This file is available on the internet at www.erd.epson.com.

10 Programming the USB Controller

USB (Universal Serial Bus) is an external bus designed to ease the connection and use of peripheral devices. USB incorporates a host/client architecture in which the host initiates all data transactions and the client either receives or supplies data to the host.

USB offers the following features to the end user:

- Single plug type for all peripheral devices.
- Support for up to 127 simultaneous devices.
- Speeds up to 12 Megabits per second.
- "hot-plugging" peripherals.

The S1D13A05 USB controller supports revision 1.1 of the USB specification. The S1D13A05 USB controller handles many common USB tasks without requiring local processor intervention. For example, setup and data transfers are handled automatically by the S1D13A05 controller. The controller notifies the local CPU, through an interrupt, when data is ready to be read from the FIFO or when data has been transmitted to the host.

This section demonstrates how to program and use the S1D13A05 USB controller. Topics covered include:

- Basic concepts such as registers and interrupts
- Initialization and data transfers
- S1D13A05 USB known issues.

10.1 Registers and Interrupts

10.1.1 Registers

Configuration, interrupt notification, and data transfers are all done using the S1D13A05 USB registers. The USB registers are located 4000h bytes past the beginning of S1D13A05 address space and should be written/read using 16 bit accesses.

On most systems the start of S1D13A05 address space, is fixed by the system design. The S1D13A05 evaluation board uses a PCI interface, thus the start of S1D13A05 address space may vary from one session to the next. Example code is written using a pointer to the USB registers (pUSB). The USB examples do not show how to obtain the register address. For a description of how to get the register address when using the S1D13A05 evaluation board, refer to the function halAcquireController() in Section 11, "Hardware Abstraction Layer" on page 119.

10.1.2 Interrupts

The S1D13A05 uses an interrupt to notify the local CPU when a USB event, which requires servicing, occurs. Events, such as USB reset and data transfer notifications generate interrupts.

It is beyond the scope of this document to explain how to setup and configure the interrupt system for the variety of platforms the S1D13A05 supports. The examples and flowcharts assume there is one interrupt handling routine which will determine the cause of the interrupt and call the appropriate handler function. It is assumed the user understands the mechanics and architecture of their system well enough setup a routine which will receive an interrupt notification and determine the cause of the interrupt.

10.2 Initialization

Initialization describes the process of setting the registers state to enable the USB controller for use. There are two cases where the USB registers need to be initialized. When the system is powered up and the registers need to be prepared for first use. The second time the registers need to be initialized is after receiving a RESET request from the host controller.

Refer to Section 10.2.2, "USB Registers" on page 103 for an example of the register initialization sequence.

10.2.1 GPIO Setup

The S1D13A05 shares four lines between GPIO and USB use. Before **any** accesses are made to the USB section the GPIO lines **must** be configured. To set the GPIO lines write the binary value 0010xxxx-1101xxxx-00000000-xxxxxxxxx (2xDx00xxh) to REG[64h], the GPIO Status and Control register.

Note

X's represent a don't care state. Depending on other system configuration (i.e. panel technology) certain don't care bits may have to be set also. See the *S1D13A05 Hardware Functional Specification*, document number X40A-A-001, for more information regarding the bits in the GPIO Status and Control register.

10.2.2 USB Registers

The steps described below are typical of the startup of the S1D13A05 USB controller.

- registers are set to an initial value
- the S1D13A05 is connected to a USB host controller
- the host controller issues a RESET command
- the USB registers are re-initialized

As initialization for both steps are similar it is recommended that one routine perform the sequence. The following table depicts a typical register initialization sequence.

Table 10-1: USB Controller Initialization Sequence

Register		Value (hex)	Notes	
REG[4040h]	USBFC INPUT CONTROL	40	Enable the USB differential input receiver and indicate we are a bulk transfer self powered device. (for ISOchronous mode, use 43h)	
REG[4044]	PIN IO STATUS DATA	01	USBPUP must be set to enable the USB interface and registers. REG[4000h] to REG[403Ah] cannot be written until this bit is set.	
REG[4000]	CONTROL	84	Enable the clocks and USB GPIO pins.	
REG[4024]	EP3 RECEIVE FIFO STATUS	1C	Clear EP3 status.	
REG[402C]	USB EP4 TX FIFO STATUS	1C	Clear EP4 status	
REG[4032]	USB STATUS	7E	Clear EP2 valid bit	
REG[4004]	INTERRUPT STATUS 0	FF	Clear any pending USB interrupts	
REG[4010]	EP1 INDEX	00	Set EP1 index to zero	
REG[4018]	EP2 INDEX	00	Set EP2 index to zero	
ext REG[00]	VENDOR ID MSB	??	Provide appropriate vendor ID	
ext REG[01]	VENDOR ID LSB	??		
ext REG[02]	PRODUCT ID MSB	??	Provide appropriate product ID	
ext Reg[03]	PRODUCT ID LSB	??		
ext REG[0C]	FIFO CONTROL	01	Enable EP4 (FIFO) valid transfer mode.	
REG[4002]	INT ENABLE 0	0A	Enable interrupts for EP1 and EP3	
REG[4004]	INT STATUS 0	0A	Make sure any pending interrupts are cleared.	
REG[4046	INTERRUPT CONTROL ENABLE 0	02	Enable RESET and endpoints notifications	
REG[4048]	INTERRUPT CONTROL ENABLE 1	01		
REG[404A]	INTERRUPT CONTROL STATUS/CLEAR 0	7F	Clear ALL interrupt status	
REG[404C]	INTERRUPT CONTROL STATUS/CLEAR 1	7F		
REG[4000]	CONTROL	A4	Enable the USB port for use	

The USB controller is ready for operation with the following configuration:

- Endpoint 1 (mailbox receive) is configured for bulk OUT and Endpoint 2 (mailbox transmit) is configured for interrupt IN. The functionality of these endpoints cannot be altered.
- Endpoint 3 (FIFO receive) is configured for bulk in and Endpoint 4 (FIFO transmit) is configured for bulk out. Endpoints 3 and 4 may also be configured for isochronous operation.

When the S1D13A05 is connected to a host controller, the host will issue a RESET command to the S1D13A05. In response to the RESET the S1D13A05 clears all USB registers in the range REG[4000h] to REG[403Ah]. The client software must respond to the reset and reprogram the USB registers. A host controller may issue a RESET at any time during operation.

After the S1D13A05 receives the RESET and re-initializes the registers, the host controller starts the USB SETUP phase. The SETUP sequence is handled entirely by the S1D13A05 USB controller. After the setup is complete the S1D13A3 is ready to begin transferring data.

Note

Prior to initializing the registers, host controller accesses are responded to with NAKs. After being configured, host controller accesses will be handled in the normal way.

Note

A Vendor ID can be obtained through the USB Implementers Forum at http://www.usb.org.

10.3 Data Transfers

The S1D13A05 USB requires very little local CPU assistance during data transfers. For the most part data transfers from the host involve reading a FIFO data register when notified of that the transfer is complete or writing a FIFO register and setting a 'ready' bit to send data to the host.

The following sections expand on the data transfer mechanism.

10.3.1 Receiving Data from the Host - the OUT command

Data transferred from the host to the S1D13A05 is directed to either EndPoint 1 (the mailbox) or EndPoint 3 (the FIFO). When the data packet has been successfully received the S1D13A05 generates an interrupt.

On receipt of the interrupt the local CPU examines the masked interrupt status registers REG[404Eh] and REG[4050h] to determine the source of the interrupt. If the interrupt came from bit 0 of the Negative Interrupt Masked Status register, REG[4050h], the next step is to examine REG[4004] to determine the exact cause of the interrupt.

Endpoint 1 - Mailbox Receive

If the cause of the interrupt is determined to be EndPoint 1 (REG[4004h] bit 1 = 1), then the data is read from the EndPoint 1 data register (REG[4012h]). The following figure shows the procedure for the CPU to read the mailbox register.

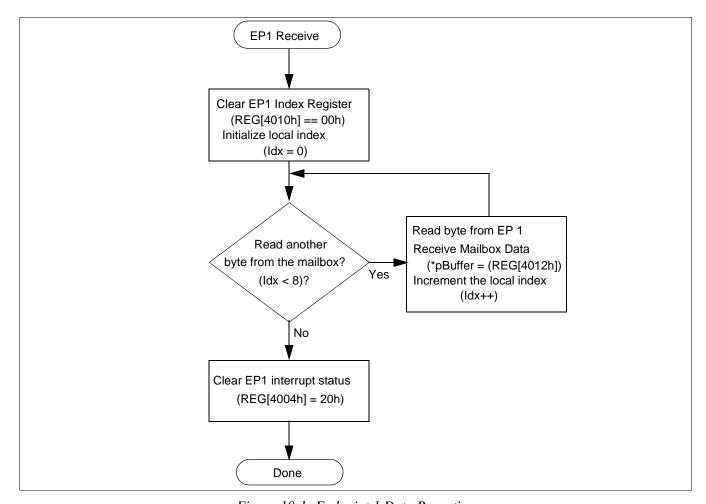


Figure 10-1: Endpoint 1 Data Reception

Note

In this diagram reference is made to two pseudo-variables:

Idx is an integer used as a loop counter

pBuffer is a pointer to eight bytes of memory to store the EP1 data

Endpoint 3 - FIFO Receive

If the cause of the interrupt is determined to be EndPoint 3, REG[4004h] bit 3 = 1b, then the host controller has sent data to EndPoint 3. Figure 10-2: shows the procedure for reading data from EndPoint 3.

An EndPoint 3 interrupt is generated when the number of bytes in the receive FIFO equal the value in the Receive FIFO Almost Full Threshold register (REG[403Ah], Index[06h]). The default value is sixty bytes. On systems where bulk transfers are used, the default value for the receive FIFO threshold should be satisfactory.

Systems with slow processors, high interrupt service latency, or configured for isochronous operation may have to decrease this value to allow the CPU time to begin reading data before the data transfer overflows the FIFO.

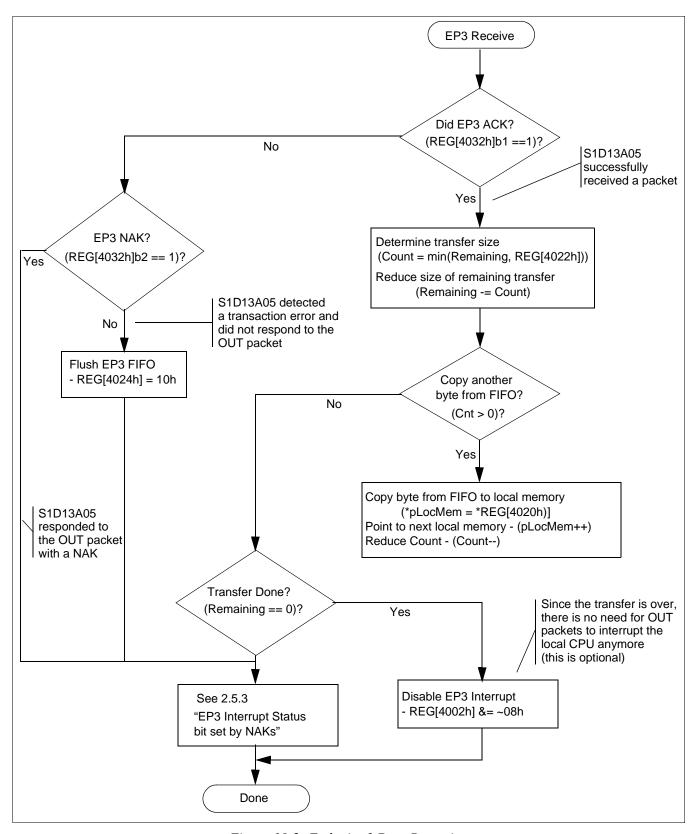


Figure 10-2: Endpoint 3 Data Reception

10.3.2 Sending Data to the Host - the IN command

Data transfers to the host controller occur when the host issues an IN command. The data comes from EndPoint 2 (the mailbox) or EndPoint 4 (the FIFO). The data transfer is handled automatically by the S1D13A05 and requires no CPU assistance.

Data transfers, from the S1D13A05 to the host controller, are performed by writing the data into either EndPoint 2 (mailbox) or EndPoint 4 (FIFO) data registers. After writing the data to the registers a control bit indicating that mailbox or FIFO data is valid is set.

Endpoint 2 - Mailbox Transmit

Figure 10-3: shows the logical flow for sending data to the host controller using EndPoint 2, the mailbox.

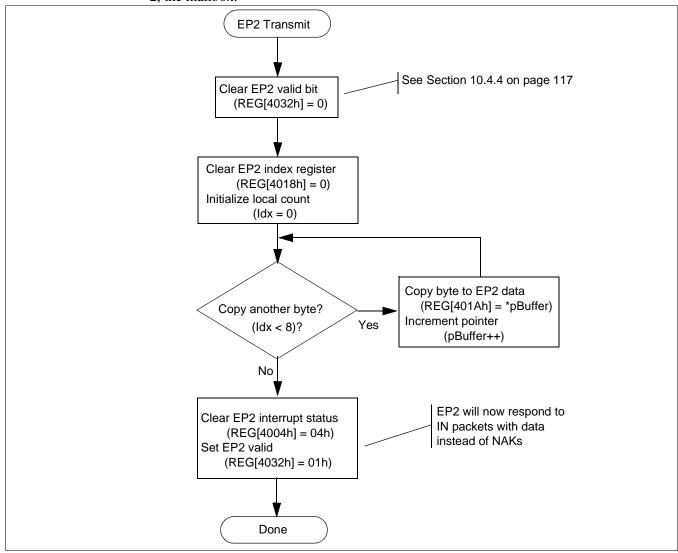


Figure 10-3: EndPoint 2 Data Transmission

Note

In this diagram reference is made to two pseudo-variables:

Idx is an integer used as a loop counter
pBuffer is a pointer to eight bytes of memory to send to the host

Endpoint 4 - Data Transmit

Transferring data to the host controller using the FIFO controller has additional overhead as this routine must run tests to ensure error free data transmission.

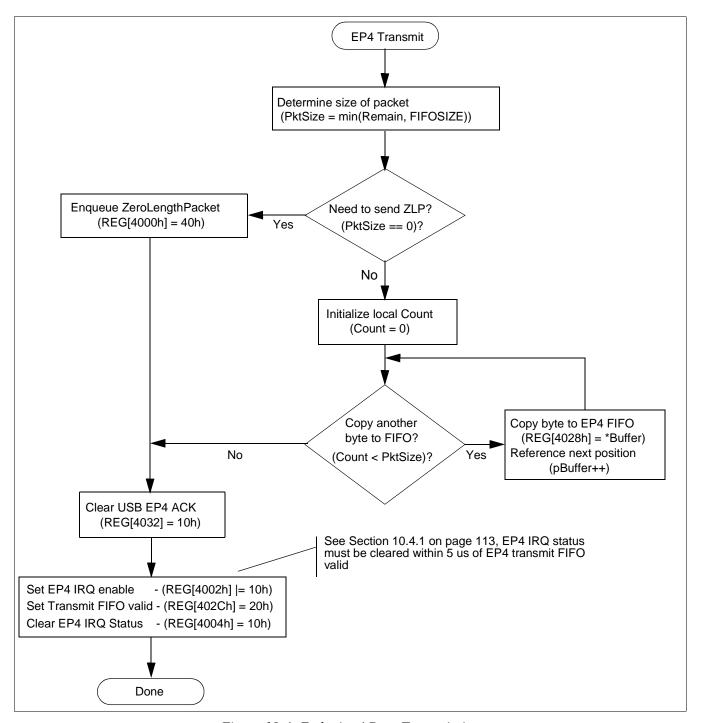


Figure 10-4: Endpoint 4 Data Transmission

Note

In this example there are three variables:

PktSize is an integer containing the number of bytes to transfer in this packet Count is an integer used for local loop control pBuffer is a pointer to an array of at least FIFOSIZE bytes.

To ensure the host controller receives the packet error free, an interrupt handler for EndPoint 4 must be configured and the flow control as shown in the following diagram must be implemented.

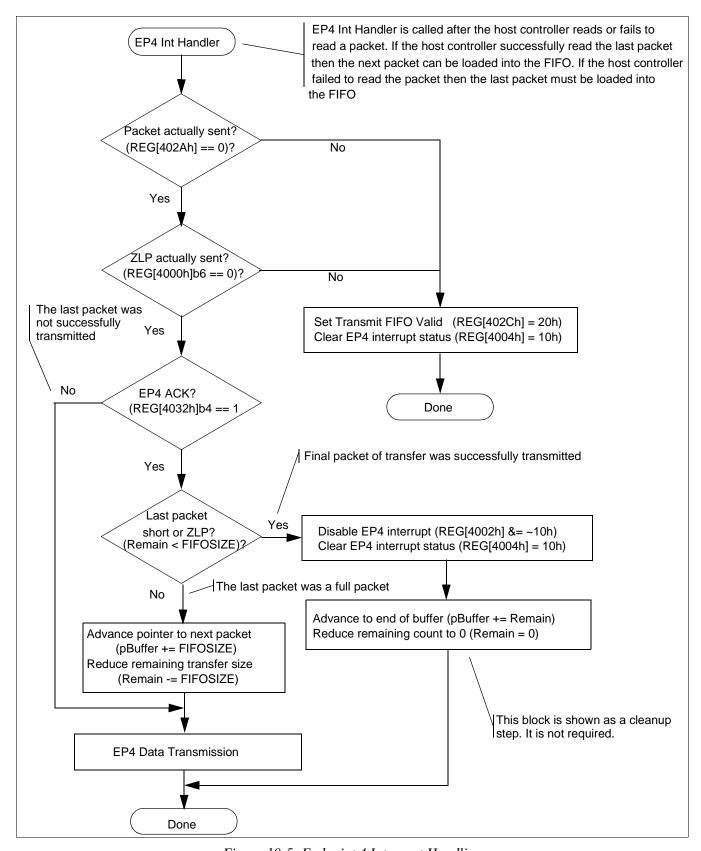


Figure 10-5: Endpoint 4 Interrupt Handling

Note

In the diagram the variables:

pBuffer is a pointer to the local memory buffer containing the data to be transferred to the host controller

Remain is an integer tracking the number of bytes still to be sent.

10.4 Known Issues

This section presents known issues with USB transfers when using the S1D13A05 USB controller.

10.4.1 EP4 NAK Status not set correctly in USB Status Register

The EP4 NAK status bit is not set in the USB Status Register (REG4032h]) when the S1D13A05 responds to an IN request on EP4 with a NAK. As a result, a local CPU receiving an "EP4 Packet Transmitted" interrupt may mistakenly believe a bus error occurred in the most recently transmitted packet.

Work Around

Disable the EP4 Packet Transmitted interrupt when no data is queued for transmission to the local CPU. The basic flow is:

In Chip Initialization Code

Do not enable 'EP4 Packet Transmitted' bit in Interrupt Enable Register 0 (REG[4002h]).

When Local Side Wishes to Send Data

- 1. Put data to transmit in FIFO.
- 2. Enable 'EP4 Packet Transmitted' bit in Interrupt Enable Register 0.
- 3. Set FIFO Valid (if using FIFO Valid Mode == TRUE). See Section 10.4.2 on page 114 for more information on setting the FIFO Valid.
- 4. Clear 'EP4 Packet Transmitted' status bit in Interrupt Status Register 0 (REG[4004]).

Note

Step 4 is time-critical. It must be performed within 5 µs after Step 3.

In Packet Transmitted Interrupt Routine

Disable 'EP4 Packet Transmitted' bit in Interrupt Enable Register 0.

10.4.2 Write to EP4 FIFO Valid bit cleared by NAK

After the local CPU sets EP4 FIFO Valid (in Endpoint 4 FIFO Status Register, REG[402Ch]), the S1D13A05 will erroneously clear the EP4 valid bit if the S1D13A05 is concurrently sending a NAK handshake in response to a previous IN token to EP4.

Work Around

The work-around is in the 'EP4 Packet Transmitted' interrupt routine. It requires the interrupt routine to know whether the recently queued packet was a zero-length packet or not, so that must be stored as a bit when the packet was loaded into the FIFO. On entry to the 'EP4 Packet Transmitted' interrupt routine:

For a non-zero-length Packet

Check the FIFO count. If it is non-zero, this error occurred. In that case, set FIFO Valid again, clear the interrupt status bit, and exit the interrupt routine.

For a zero-length Packet

Check the Software EOT bit (in Control Register, REG[4000h]). If it is set, the FIFO Valid write failed. In that case, set FIFO Valid again, clear the interrupt status bit, and exit the interrupt routine

10.4.3 EP3 Interrupt Status bit set by NAKs

When receiving Bulk OUT packets from a Host PC, the S1D13A05 "Endpoint 3 Interrupt Status" interrupt typically is used to notify the peripheral firmware that a packet has been received. This bit also serves as the "Receive FIFO Valid" bit, so additional packets addressed to Endpoint 3 are NAKed until this status bit is cleared. Once cleared, however, it may become set by another packet which is NAKed by the S1D13A05, causing the Receive FIFO to become "Valid" again. The Host PC may immediately attempt to retransmit the NAKed packet. The firmware should be written to prevent a cycle in which the FIFO is "Valid" each time that the Host PC sends an OUT packet.

The following rules govern the S1D13A05's behavior regarding packets received on Endpoint 3:

Rule A. At the end of a received OUT token to EP3 (and before the data is received), the S1D13A05 decides to NAK the packet if the "EP3 Interrupt Status" bit is set, and will therefore throw away data received.

Rule B. At the end of a received packet (including one which is NAKed), the S1D13A05 sets the "EP3 Interrupt Status" bit.

Rule C. Local firmware should clear the "EP3 Interrupt Status" bit after reading all bytes out of the EP3 Receive FIFO.

Host Device OUT Data0 pkt OUT Data1 pkt OUT Data1 pkt NAK NAK

The following figure shows how a repeating cycle of NAKed OUT packets may occur.

Figure 10-6: Firmware Looping Continuously on Received OUT packets

At Point 1, the EP3 Interrupt activates because a packet has been received. In response, the firmware reads the bytes out of the packet and clears the interrupt at Point 2. A second packet is already being received at Point 2, and the S1D13A05 has already decided to NAK this packet due to Rule A. At point 3, the S1D13A05 has NAKed the packet and asserts the Interrupt status bit.

Again, the local firmware responds to the interrupt, and seeing it is only a "NAK" interrupt, clears the interrupt condition at Point 4. However, the Host PC has begun to retry the second packet already, so the packet will again get NAKed due to Rule B. This cycle could continue until something changes the flow of OUT packets – for instance, an SOF at the beginning of the next frame, or packet traffic directed at another device or endpoint.

Work Around

The normal program flow for a packet which the S1D13A05 NAKs is as follows:

- 1. S1D13A05 asserts IRQ# after NAKing a received packet on EP3.
- 2. Local CPU is interrupted, enters interrupt routine.
- 3. Local CPU reads Interrupt Status Register 0 (REG[4004h]) and sees "EP3 Packet Received" interrupt bit.
- 4. Local CPU reads USB Status Register (REG[4032h]) and sees "NAK" bit set.
- 5. Local CPU clears Interrupt Status Register 0 (REG[4004h]) "EP3 Packet Status" interrupt bit.
- 6. Local CPU clears USB Status Register (REG[4032]) "NAK" bit.

The technique for avoiding this potential pitfall depends on the speed of the peripheral CPU. The critical timing parameter is the time from the S1D13A05 asserting IRQ# to the firmware clearing the "EP3 Packet Received" bit in Interrupt Status Register 0.

For a Fast CPU

A CPU which can clear the Interrupt Status Register 0 bit within 10 msec after the S1D13A05 asserts the IRQ# signal requires no extra code to prevent the potential cycling. In this case, the CPU is fast enough to clear a NAKed packet's Interrupt Status Register 0 bit before another packet can be received.

For a Slow CPU

A CPU which can't meet the timing requirements for a fast CPU above will require some additional firmware to eliminate the potential for this cycle. After successfully receiving a packet on Endpoint 3 and emptying received data out of the FIFO, the firmware should follow the flow in the following figure.

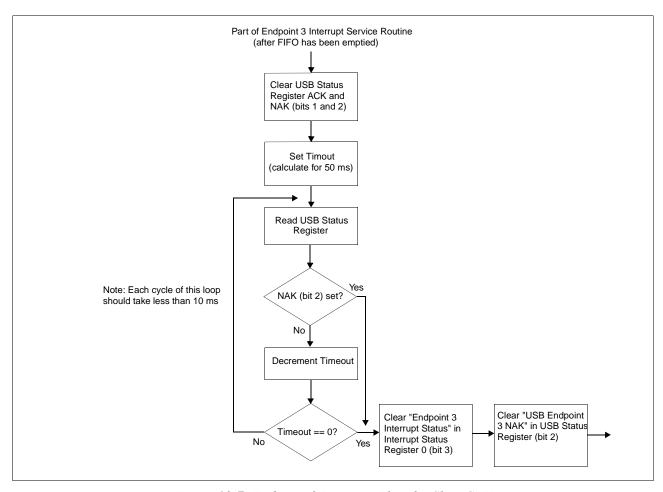


Figure 10-7: Endpoint 3 Program Flow for Slow CPU

10.4.4 "EP2 Valid Bit" in USB Status can be erroneously set by firmware

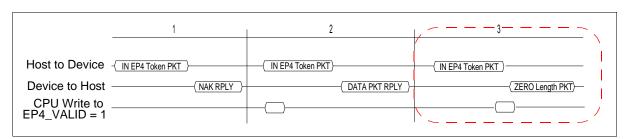
"Endpoint 2 Valid" is the only bit in USB Status which is not written as a "Yes/CLR" bit. Therefore, the firmware must do a read-modify-write sequence when clearing other bits in Interrupt Status Register 0 (REG[4004h]), to preserve the state of "Endpoint 2 Valid". However, this read-modify-write could lead to erroneously setting the EP2 Valid bit if the following sequence occurs with "EP2 Valid" set True:

- 1. Firmware reads Interrupt Status Register 0 to do a read-modify-write
- 2. Data from EP2 is sent to Host PC, causing S1D13A05 to clear EP2 Valid
- 3. Firmware writes modified value to Interrupt Status Register 0

In this case, the firmware has set EP2 Valid in Step 3 after it was cleared by the Host PC, erroneously validating EP2 for the next IN token from the Host.

Work Around

First, the firmware should do the read-modify-write operation as described above anytime it is modifying bits in "USB Status".


Second, when the firmware recognizes an interrupt for "EP2 Packet Transmitted", it should immediately write a '0' to USB Status Register. This will clear the EP2 Valid bit in the unlikely event that it was erroneously set during a read-modify-write operation.

10.4.5 Setting EP4 FIFO Valid bit while NAKing IN token

Bit 5 of REG[402Ch] indicates to the S1D13A05 controller when data in the endpoint 4 FIFO is ready to be transferred to the host computer. Changing the state of this bit at certain times may generate an error.

When the S1D13A05 USB controller receives an endpoint 4 IN request and endpoint 4 is not ready to transmit data (REG[402Ch] bit 5 = 0), the response is a NAK packet. If endpoint 4 is toggled to a ready to transmit state just before a NAK response packet is sent, the controller may erroneously send a zero length packet instead. When this happens, the data toggle state will be incorrectly set for the next endpoint 4 data transmit.

The following timing diagram shows the error occurring in section 3.

This unexpected occurrence of a zero length packet may cause file system handling errors for some operating systems.

Work Around

There are two software solutions for this occurrence.

Disable USB Receiver before setting the EP4 FIFO Valid bit

The first solution involves disabling the USB receiver to avoid responding to an EP4 IN packet. During the time the USB receiver is disabled the EP4 FIFO Valid bit is set.

When the local CPU is ready to send data on endpoint 4 the steps to follow are:

- 2. Disable the USB differential input receiver (REG[4040h] bit 6 = 0)
- 3. Wait a minimum of 1µs. If needed, delays may be added
- 4. Enable the EP4 FIFO Valid bit (REG[402Ch] bit 5 = 1)
- 5. Clear the EP4 Interrupt status bit (REG[4004h] bit 4 = 1)
- 6. Enable the USB differential input receiver (REG[4040h] bit 6 = 1)

Note

Steps 1 through 5 are time critical and must be performed in less than 6 µs.

Note

To comply with "EP4 NAK Status not set correctly in USB Status register", steps 3 and 4 must be completed within 5 µs of each other. For further information on "EP4 NAK Status not set correctly in USB Status register", see Section 10.4.1, "EP4 NAK Status not set correctly in USB Status Register".

EP4 FIFO Valid bit set after NAK and before the next IN token

The second solution is to wait until immediately after the USB has responded to an IN request with a NAK packet before setting the transmit FIFO valid bit. This solution is recommended only for fast processors.

When the local CPU is ready to send data on endpoint 4, it must first detect that a NAK packet has been sent. This is done by reading the EP4 Interrupt Status bit (REG[4004h] bit 4). If the EP4 FIFO Valid bit was not set, the EP4 Interrupt Status bit is set only if a NAK packet has been sent. When the local CPU detects the NAK it must immediately set the EP4 FIFO Valid bit (before responding to the next IN token).

After filling the EP4 FIFO the steps to follow before setting the EP4 FIFO Valid bit are:

- 1. Clear the EP4 Interrupt Status bit (REG[4004h] bit 4)
- 2. Read the EP4 Interrupt Status bit (REG[4004h] bit 4) until it is set
- 3. Set the EP4 FIFO Valid bit (REG[402Ch] bit 5 = 1)

The setting of the EP4 FIFO Valid bit is time critical. The EP4 FIFO Valid bit must be set within 3 µs after the EP4 Interrupt Status has been set internally by the S1D13A05.

11 Hardware Abstraction Layer

11.1 Introduction

The S1D13A05 Hardware Abstraction Layer (HAL) is a collection of routines intended to simplify the programming for the S1D13A05 evaluation board. Programmers can use the HAL to assist in rapid software prototyping for the S1D13A05 evaluation board.

The HAL routines are divided into discrete functional blocks. The functions for startup and clock control offer specific support for the S1D13A05 evaluation board, while other routines demonstrate memory and register access techniques. For a complete list, see Table 11-1:, "HAL Library API".

11.2 API for the HAL Library

The following table lists the functions provided by the S1D13A05 HAL library.

Table 11-1: HAL Library API

Function	Description			
Startup				
halAcquireController	This routine loads the driver required to access the S1D13A05, locates the and returns the address of the controller.			
hallnitController	Initializes the controller for use. This includes setting the programmable clock and initializing registers as well as setting the lookup table and clearing video memory.			
Memory Access				
halReadDisplay8	Reads one byte from display memory			
halReadDisplay16	Reads one word from display memory			
halReadDisplay32	Reads one double word from display memory			
halWriteDisplay8	Writes one byte to display memory			
halWriteDisplay16	Writes on word to display memory			
halWriteDisplay32	Writes on double word to display memory			
Register Access				
halReadReg8	Reads one byte from a control register			
halReadReg16	Reads one word from a control register			
halReadReg32	Reads one dword from a control register			
halWriteReg8	Writes one byte to a control register			
halWriteReg16	Writes one word to a control register			
halWriteReg32	Writes one dword to a control registers			
Clock Support				
halSetClock	Programs the ICD2061A Programmable Clock Generator.			
halGetClock	Returns the frequency of the requested ICD2061A clock			
Miscellaneous				
halGetVersionInfo	Returns a standardized startup banner message			
halGetLastError	Returns the numerical value of the last error and optionally an ASCII string describing the error			
hallnitLUT	This routine sets the LUT to uniform values for color/mono panels at all color depths			

11.2.1 Startup Routines

There are two routines dedicated to startup and initializing the S1D13A05. Typically these two functions are the first two HAL routines a program will call.

The startup routines locate the S1D13A05 controller and initialize HAL data structures. As the name suggests, the initialization routine prepares the S1D13A05 for use. Splitting the startup functionality allows programs to start and locate the S1D13A05 but delay or possibly never initialize the controller.

Boolean halAcquireController(UInt32 * pMem, UInt32 * pReg)

Description:

This routine initializes data structures and initiates the link between the application software and the hardware. When the S1D13A05 HAL is used this routine must be the first HAL function called.

On PCI platforms, the routine attempts to load the S1D13xxx driver. If the driver loads successfully, then a check is made for the existence of an S1D13A05 evaluation board.

Parameters:

pMem Pointer to an unsigned 32-bit integer which will receive the offset to the first

byte of display memory. The offset may be cast to a pointer to access

display memory.

pReg Pointer to an unsigned 32-bit integer which will receive the offset to the first

byte of register space. The offset may be cast to a pointer and to access

S1D13A05 registers.

On Win32 systems the returned offsets correspond to a linear addresses

within the callers address space.

Return Value: TRUE (non-zero) if the routine is able to locate an S1D13A05.

pMem will contain the offset to the first byte of display memory. pRegs will contain the address of the first 13A05 control register.

FALSE (zero) if an S1D13A05 is not located.

pMem and pRegs will be undefined.

If additional error information is required call halGetLastError().

Note

- 1. This routine **must** be called before any other HAL routine is called.
- 2. For programs written for the S1D13A05 evaluation board, an application may call this routine to obtain pointers to the registers and display memory and then perform all S1D13A05 accesses directly.
- 3. This routine does not modify S1D13A05 registers or memory.

Boolean hallnitController(UInt32 Flags)

Description:

This routine performs the initialization portion of the startup sequence.

Initialization of the S1D13A05 evaluation board consists of several steps:

- Program the ICD2061A clock generator
- Set the initial state of the control
- Set the LUT to its default value
- Clear video memory

All display memory and nearly every control register can or will be affected by the initialization.

Any, or all, of the initialization steps may be bypassed according to values contained in the Flags parameter. This allows for conditional run-time changes to the initialization.

Parameters:

Flags contains initialization specific information. The default action of the HAL is to perform all initialization steps. Flags contain specific instructions for bypassing certain initialization steps. The values for Flags are:

fDONT SET CLOCKS

Setting this flag causes initialization to skip programming the ICD2061A clock generator. Normally the clock on the S1D13A05 is programmed to configured values during initialization.

fDONT INIT REGS

Bypass register initialization. Normally the initialization process sets the register values to a known state. Setting this flag bypasses this step.

fDONT INIT LUT

Bypass look-up table initialization.

fDONT CLEAR MEM

The final step of the initialization process is to clear video display memory. Setting this flag will bypass this step.

Return Value:

TRUE (non-zero) if the initialization was successful.

FALSE (zero) if the HAL was unable to initialize the S1D13A05

If additional error information is required call halGetLastError()

11.2.2 Memory Access

The S1D13A05 HAL includes six memory access functions. The primary purpose of the memory access functions is to demonstrate how to access display memory using the C programming language. Most programs that need to access memory will bypass the HAL and access memory directly.

UInt8 halReadDisplay8(UInt32 Offset)

Description: Reads and returns the value of one byte of display memory.

Parameters: Offset A 32 bit offset to the byte to be read from display memory

Return Value: The value of the byte at the requested offset.

UInt16 halReadDisplay16(UInt32 Offset)

Description: Reads and returns the value of one word of display memory.

Parameters: Offset A 32 bit byte offset to the word to be read from display memory

To prevent system slowdowns and possibly memory faults, Offset should be

a word multiple.

Return Value: The value of the word at the requested offset.

UInt32 halReadDisplay32(UInt32 Offset)

Description: Reads and returns the value of one dword of display memory.

Parameters: Offset A 32 bit byte offset to the dword to be read from display memory.

To prevent system slowdowns and possibly memory faults, Offset should be

a dword multiple.

Return Value: The value of the dword at the requested offset.

void halWriteDisplay8(UInt32 Offset, UInt8 Value, UInt32 Count)

Description: Writes a byte into display memory at the requested address.

Parameters: Offset A 32 bit byte offset to the byte to be written to display memory.

Value The byte value to be written to display memory.

Count The number of times to repeat Value in memory. By including a count (or

loop) value this function can efficiently fill display memory.

Return Value: Nothing.

void halWriteDisplay16(UInt32 Offset, UInt16 Value, UInt32 Count)

Description: Writes a word into display memory at the requested offset.

Parameters: Offset a 32 bit byte offset to the byte to be written to display memory. To prevent

system slowdowns and possibly memory faults, Offset should be a word

multiple.

Value the word value to be written to display memory.

Count the number of times to repeat the Value in memory. By including a count (or

loop) value this function can efficiently fill display memory.

Return Value: Nothing.

void halWriteDisplay32(UInt32 Offset, UInt32 Value, UInt32 Count)

Description: Writes a dword into display memory at the requested offset.

Parameters: Offset A 32 bit byte offset to the byte to be written to display memory. To prevent

system slowdowns and possibly memory faults, Offset should be a dword

multiple.

Value The dword value to be written to display memory.

Count The number of times to repeat the Value in memory. By including a count

(or loop) value this function can efficiently fill display memory.

Return Value: Nothing.

11.2.3 Register Access

The S1D13A05 HAL includes six register access functions. The primary purpose of the register access functions is to demonstrate how to access the S1D13A05 control registers using the C programming language. Most programs that need to access the registers will bypass the HAL and access the registers directly.

UInt8 halReadReg8(UInt32 Index)

Description: Reads and returns the contents of one byte of an S1D13A05 register at the requested off-

set. No S1D13A05 registers are changed.

Parameters: Index 32 bit offset to the register to read. Index is zero based from the beginning

of register address space. (e.g. if Index == 04h then the Memory Clock Configuration register will be read and if Index == 8000h then the BitBLT

Control Register will be read)

Return Value: The value read from the register.

Use caution in selecting the index and when interpreting values returned from

halReadReg8() to ensure the correct meaning is given to the values. Changing between big

endian and little endian will move relative register offsets.

UInt16 halReadReg16(UInt32 Index)

Description: Reads and returns the contents of one word of an S1D13A05 register at the requested off-

set. No S1D13A05 register are changed.

Parameters: Index 32 bit offset to the register to read. Index is zero based from the beginning

of register address space. (e.g. if Index == 04h then the Memory Clock Configuration register will be read and if Index == 8000h then the BitBLT

Control Register will be read)

Return Value: The word value read from the register.

Use caution in determining the index and interpreting the values returned from halReadReg16() to ensure the correct meaning is given to the values. Changing between big and little endian will move relative register offsets resulting in different values.

UInt16 halReadReg32(UInt32 Index)

Description: Reads and returns the dword value of an S1D13A05 register at the requested offset. No

S1D13A05 register are changed.

Parameters: Index 32 bit offset to the register to read. Index is zero based from the beginning

of register address space. (e.g. if Index == 04h then the Memory Clock Configuration register will be read and if Index == 8000h then the BitBLT

Control Register will be read)

Return Value: The dword value read from the register.

void halWriteReg8(UInt32 Index, UInt8 Value)

Description: Writes an 8 bit value to the register at the requested offset.

Parameters: Index 32 bit offset to the register to write. Index is zero based from the beginning

of register address space. (e.g. if Index == 04h then the Memory Clock Configuration register will be written to and if Index == 8000h then the

BitBLT Control Register will be written to)

Value The byte value to write to the register. Changing between big and little

endian will move relative register offsets. Use caution in interpreting the index and values to write to registers using the halWriteReg8() function to

ensure that register are programmed correctly.

Return Value: Nothing.

void halWriteReg16(UInt32 Index, UInt16 Value)

Description: Writes a 16 bit value to the S1D13A05 register at the requested offset.

Parameters: Index 32 bit byte offset to the register to write. Index is zero based from the

beginning of register address space. (e.g. if Index == 04h then the Memory Clock Configuration register will be written to and if Index == 8000h then

the BitBLT Control Register will be written to)

Value The word value to write to the register.

Return Value: Nothing.

Changing between big and little endian will move relative register offsets. Use caution in interpreting the index and values to write to registers using the halWriteReg8() function to

ensure that register are programmed correctly.

void halWriteReg32(UInt32 Index, UInt32 Value)

Description: Writes a 32 bit value (dword) to the register at the requested offset.

Parameters: Index 32 bit byte offset to the register to write. Index is zero based from the

beginning of register address space. (e.g. if Index == 04h then the Memory Clock Configuration register will be written to and if Index == 8000h then

the BitBLT Control Register will be written to)

Value The dword value to write to the register.

Return Value: Nothing.

11.2.4 Clock Support

To maximize flexibility, S1D13A05 evaluation boards include a programmable clock. The following HAL routines provide support for the programmable clock.

Boolean halSetClock(UInt32 ClkiFreq, UInt32 Clki2Freq)

Description: This routine program the ICD2061A programmable clock generator to the specified fre-

quency.

Parameters: ClkiFreq The desired frequency, in Hz, for CLKI.

Clki2Freq The desired frequency, in Hz, for CLKI2.

dwFrequency The desired frequency (in Hz).

Return Value: TRUE (non-zero) if the function was successful in setting the clock.

FALSE (zero) if there was an error detected while trying to set the clock.

If additional error information is required call halGetLastError().

UInt32 halGetClock(CLOCKSELECT Clock)

Description: Returns the frequency of the clock input identified by 'Clock'.

Parameters: Clock Indicates which clock to read. This value can be CLKI or CLKI2.

Return Value: The frequency, in Hz, of the requested clock.

11.2.5 Miscellaneous

The miscellaneous function are an assortment of routines, determined to be beneficial to a number of programs and hence warranted being included in the HAL.

void halGetVersionInfo(const char * szProgName, const char * szDesc, const char * szVersion, char * szRetStr, int nLength)

Description: This routine creates a standardized startup banner by merging program and HAL specific

information. The newly formulated string is returned to the calling program for display.

The final formatted string will resemble:

13A05PROGRAM - Internal test and diagnostic program - Build: 1234 [HAL: 1234]

Copyright (c) 2000,2001 Epson Research and Development, Inc.

All Rights Reserved.

Parameters: szProgName Pointer to an ASCIIZ string containing the name of the program.

(e.g. "PROGRAM")

szDesc Pointer to an ASCIIZ string containing a description of what this program

is intended to do. (e.g. "Internal test and diagnostic program")

szVersion Pointer to an ASCIIZ string containing the build info for this program. This

should be the revision info string as updated by VSS.

(e.g. "\$Revision: 30 \$")

szRetStr Pointer to a buffer into which the product and version information will be

formatted into.

nLength Total number of bytes in the string pointed to by szRetStr. This function will

write nLength or fewer bytes to the buffer pointed to by szRetStr.

Return Value: Nothing.

int halGetLastError(char * ErrMsg, int MaxSize)

Description: This routine retrieves the last error detected by the HAL.

Parameters: ErrMsg When halGetLastError() returns ErrMsg will point to the textual

error message. If ErrMsg is NULL then only the error code will be

returned.

MaxSize Maximum number of bytes, including the final '\0' that can be

placed in the string pointed to by ErrMsg.

Return Value: The numerical value of the internal error number.

HALEXTERN void hallnitLUT(void)

Description: To standardize the appearance of test and validation programs, it was

decided the HAL would have the ability to set the lookup table to uniform

values.

The routine cracks the color depth and display type to determine which LUT

values to use and proceeds to write the LUT entries.

Parameters: None

Return Value: Nothing.

12 Sample Code

Example source code demonstrating programming the S1D13A05 using the HAL library is available on the internet at www.erd.epson.com.

13 Sales and Technical Support

Japan

Seiko Epson Corporation **Electronic Devices Marketing Division** 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600

Fax: 2827-4346

http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110

http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

THIS PAGE LEFT BLANK

READ-ONLY CONFIGURATION REGISTERS

Product Info REG[00h]	ormation Regi		efault = 2Dxx4	02Dh										F	Read Only
		Produc	ct Code			Revisio	n Code	n/a			(CNF[6:0] Statu	S		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Display Buffer Size									Produc	t Code			Revisio	n Code
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

CLOCK CONFIGURATION REGISTERS

Memory Clo REG[04h]	ck Configura		efault = 00000	000h										F	Read/Write
							n	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				n	/a					MCLK Di	vide Select		n/a		BCLK Source Select
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Pixel Clock REG[08h]	Configuration		efault = 00000	000h										F	Read/Write
							n	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•	•		n/a		•	•		PC	CLK Divide Se	ect	n	/a	PCLK Sou	urce Select
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

PANEL CONFIGURATION REGISTERS

Panel Type REG[0Ch]	& MOD Rate F		efault = 00000	000h										R	tead/Write
			n/a				FPSHIFT Invert	n.	/a			MOD	Rate		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			n/a				HR-TFT PS Mode	Panel Data Format Select	Color/ Mono Panel Select	Panel Da	ata Width	Reserved	n/a	Pane	I Туре
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Display Sett REG[10h]	tings Register		efault = 00000	000h										R	tead/Write
	n/a Pix Doub Verti							Display Blank	Dithering Disable	Display Blank Polarity	SW Video Invert	PIP ⁺ Window Enable	n/a	SwivelView	Mode Sele
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					n/a								s-per-pixel Sel alue: 1, 2, 4, 8		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Power Save REG[14h]	Configuration		efault = 00000	010h										R	tead/Write
							n	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			n	/a				VNDP Status (RO)	Memory Power Save Status (RO)	n/a	Power Save Enable		n/a		Reserve
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

LOOK-UP TABLE REGISTERS

Look-Up Tal REG[18h]	ble Write Reg		efault = 00000	000h										٧	Vrite Only
			LUT Write	e Address						LUT Red	Write Data			n/	'a
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		LUT Green	Write Data			n	/a			LUT Blue	Write Data			n/	'a
15									6	5	4	3	2	1	0
Look-Up Tal REG[1Ch]	ble Read Regi		efault = 00000	000h									Write Onl	y (bits 31-24)/F	Read Only
		L	UT Read Add	ress (write only	/)					LUT Red	Read Data			n/	'a
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		LUT Green	Read Data			n	/a			LUT Blue	Read Data			n/	'a
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Register Summary Issue Date: 02/01/21 S1D13A05 X40A-R-001-01

DISPLAY MODE REGISTERS

DISPL		_	EGIST	EKS											
Horizontal T REG[20h]	Total Register		efault = 00000	000h										F	Read/Write
31	30	29	28	27	26	25	n 24	/a 23	22	21	20	19	18	17	16
				n/a						<u> </u>		zontal Total bi		1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[24h]	Display Period	d Register D	efault = 00000	000h										F	Read/Write
31	30	29	28	27	26	25	24	/a 23	22	21	20	19	18	17	16
- 01	30	23	20	n/a	20	20	24	20	- 22	21		al Display Peri		.,	10
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[28h]	Display Period		n Register efault = 00000	000h										F	Read/Write
31	30	29	28	27	26	25	24	/a 23	22	21	20	19	18	17	16
0.	00		/a	2.	20	20		20		al Display Perio			.0		10
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FPLINE Reg REG[2Ch]	jister	D	efault = 00000	000h										F	Read/Write
	•	•	n	/a		•		FPLINE Polarity			FPLIN	E Pulse Width	bits 6-0		
31	30	29	28 /a	27	26	25	24	23	22 FP	21 LINE Pulse Sta	20 art Position bits	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Vertical Total REG[30h]	al Register	D	efault = 00000	000h										F	Read/Write
	1	1	1	1	1	1		/a	1	1	1	1	1	1	1
31	30	29	28 /a	27	26	25	24	23	22	21 Vertical To	20 otal bits 9-0	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Vertical Dis REG[34h]	play Period R		efault = 00000	000h										F	Read/Write
31	30	29	28	27	26	25	n 24	/a 23	22	21	20	19	18	17	16
31	30		/a	21	20	25	24	23		Vertical Display			10	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[38h]	play Period S		Register efault = 00000	000h										F	Read/Write
31	30	29	28	27	26	25	24	/a 23	22	21	20	19	18	17	16
			/a						Vertica	l Display Period	d Start Position				
15 FPFRAME R	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[3Ch]		D	efault = 00000					FPFRAME	•				EDE	RAME Pulse	Read/Write
0.4	I	I		/a I	I 00	l as	l	Polarity	00		ı/a I oo	1 40		bits 2-0	1
31	30	29	28 /a	27	26	25	24	23	22 FPF	21 RAME Pulse S	20 start Position b	19 its 9-0	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Main Windo REG[40h]	w Display Sta		egister efault = 00000	000h										F	Read/Write
31	30	29	28	27	26	25	n/a 24	23	22	21	20	19	18	17	bit 16 16
Ŭ.								Start Address				.,			
15 Main Windo	14 ow Line Addre	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[44h]	Line Adale		efault = 00000	000h										F	Read/Write
31	30	29	28	27	26	25	24	/a 23	22	21	20	19	18	17	16
		n	/a	1					Main	Window Line A		bits 9-0			
15 Extended Pa	14 anel Type Reg	13 gister	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[48h]	, po . (c)	D	efault = 00000	000h				/a						F	Read/Write
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			n/a				Data Compare			n/a			Extended Pane	al Typo bito 2	0
	,	,	ı/a				Invert Enable			ı d				or rype bits 3-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

PICTURE-IN-PICTURE PLUS (PIP+) REGISTERS

PIP* Display REG[50h]	y Start Addres	s Register													
REGISON		D	efault = 00000	0006											Read/Write
		U	elault = 00000	00011										P	
					•		n/a								bit 16
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						PIP+ Wi	ndow Display	Start Address	bits 15-0						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PIP* Windon REG[54h]	w Line Addres		ister efault = 00000	000h										F	Read/Write
							n	/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n	ı/a						PIP+ V	Vindow Line A	ddress Offset I	bits 9-0			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PIP* Windo	w X Positions		efault = 00000	000h										F	Read/Write
		n	ı/a						PIP	Window X E	nd Position bits	s 9-0			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n	ı/a						PIP*	Window X St	art Position bit	s 9-0			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PIP* Windo	w Y Positions		efault = 00000	000h										F	Read/Write
		n	/a						PIP	Window Y E	nd Position bits	s 9-0			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n	/a	1					PIP⁺	Window Y St	art Position bit	s 9-0			1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Register Summary Issue Date: 02/01/21

MISCELLANEOUS REGISTERS

Reserved REG[60h]		D	efault = 00000	1000h										Re	ead/Write
				ı/a							Res	erved			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n	/a	•	•	Reserved	Reserved	Reserved	Reserved	Reserved	1	n/a	Reserved	n	/a
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIO Status REG[64h]	s and Control		efault = 20000	1000h										Re	ead/Write
GPIO7	GPIO6	GPIO5	GPIO4	GPIO3	GPIO2	GPIO1	GPIO0	GPIO7 IO	GPIO6 IO	GPIO5 IO	GPIO4 IO	GPIO3 IO	GPIO2 IO	GPIO1 IO	GPIO0 IO
Input Enable	Input Enable	Input Enable	Input Enable	Input Enable	Input Enable	Input Enable	Input Enable	Config							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			n	ı/a				GPIO7 IO Control/ Status	GPIO6 IO Control/ Status	GPIO5 IO Control/ Status	GPIO4 IO Control/ Status	GPIO3 IO Control/ Status	GPIO2 IO Control/ Status	GPIO1 IO Control/ Status	GPIO0 IO Control/ Status
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPO Contro REG[68h]	ol Register	D	efault = 00000	1000h										Re	ead/Write
							1	ı/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n/a			GPO10 Control	GPO9 Control	GPO8 Control	GPO7 Control	GPO6 Control	GPO5 Control	GPO4 Control	GPO3 Control	GPO2 Control	GPO1 Control	GPO0 Control
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Brightness REG[70h]	(PWM) Config	uration Regis	ster efault = 00000	innah										D.	ead/Write
REO[/onj			Clault = 00000	100011				n/a						100	au Wille
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			n	ı/a						Divide Select 3-0		PWM Clock Force High	PWMCLK S bits		PWM Clock Enable
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Brightness REG[74h]	(PWM) Duty C	ycle Register	efault = 00000	1000h										Re	ead/Write
-, ,							ı	n/a							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			n	/a							PWMOUT Du	ty Cycle bits 7-0)		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[80h]	d A Register	D	efault = not ap	plicable										Re	ead/Write
							Scratch Page	d A bits 31-24							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	I 44	l 40	l 40	I 44	I 10	L	1	d A bits 15-0	l e	ء ا	4	l ,	l ,	l 1	I 0
15 Scratch Pac	14 d B Register	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[84h]		D	efault = not ap	plicable										Re	ead/Write
31	30	29	28	27	26	25	Scratch Page 24	23 B bits 31-24	22	21	20	19	18	17	16
31	30	29	20	21	20	25		d B bits 15-0	22	21	20	19	10	17	10
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Scratch Pac	d C Register														1004.7
REG[88h]		D	efault = not ap	plicable			Scratch Pag	d C bits 31-24						Re	ead/Write
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								d C bits 15-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						1									

EXTENDED PANEL REGISTERS

EXTE	NDED	PANE	L REG	ISTER	S										
HR-TFT Mo REG[A0h]	de 2 CLS Wid		Default = 00000	112Ch										F	Read/Write
31	30	29	28	27	26	25	n 24	/a 23	22	21	20	19	18	17	16
			n/a							l	Pulse Width bi	its 8-0			
15	14 de 2 PS1 Risi	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[A4h]	de 21 of Rish		Default = 00000	1032h			n	/a						F	Read/Write
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	l 14	13	12	n 11	/a 10	l 9	8	7	6	5	4	PS1 Rising I	Edge bits 5-0 2	l 1	0
	de 2 PS2 Risi	ng Edge Regi			10		0	,	0		4			-	Read/Write
REGIAON						_	n	/a							\eau/wiite
31	30	29	28	27 /a	26	25	24	23	22	21	20 PS2 Rising	19 Edge bits 7-0	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HR-TFT Mo REG[ACh]	de 2 PS2 Tog	gle Width Reg	gister Default = 00000	100Ah										F	Read/Write
31	30	29	28	27	26	25	n 24	/a 23	22	21	20	19	18	17	16
01		1 23	20	n/a	20							Toggle Width b	l	.,	10
15	14 ode 2 PS3 Sign	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[B0h]	ide 2 PS3 Sign		Default = 00000	1064h				,						F	Read/Write
31	30	29	28	27	26	25	24	/a 23	22	21	20	19	18	17	16
	1	i	1	n/a	l	i	i .	i		1	i	Signal Width b		1 .	1 .
HR-TFT Mo	14 de 2 REV Tog	13 gle Point Reg	12 jister	11	10	9	8	7	6	5	4	3	2	1	0
REG[B4h]		Е	Default = 00000	100Ah			n	/a						F	Read/Write
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	n/a 10	9	8	7	6	5	4	REV	Toggle Point bi	its 4-0 1	0
HR-TFT Mo REG[B8h]	de 2 PS1/2 En		Default = 00000	007h										F	Read/Write
24	l 20	l 20	l 00	1 07	200	1 25	1	/a 	l 00	l 04	l 20	l 40	1 40	l 47	1 40
31	30	29	28	27	26	25 n/a	24	23	22	21	20	19	18 PS	17 S1/2 End bits	7-0
15	14 Configuration	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[BCh]	Comiguration		Default = 00000	000h			n	/a						F	Read/Write
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
POL Type	n/a	AP 13	Pulse Width bit	1	n/a	-	osition bits1-0	7	n/a 6	5	VCLK Ho	old bits 1-0	n/a 2		tup bits 1-0
	14 Timing Regist	er	12 Default = 09180	11	10	9	0	,	6	5	4	3	2	1	Read/Write
REG[C0h]	n/a			Rising Edge t	o STH Pulse t	oits 5-0		n/a		GF	RES Falling Ed	dge to FRP Tog	gle Point bits		Read/Write
31	30 n/a	29	28	27 ling Edge to G	26	25	24	23	22 n/a	21	20 CDCK Di-	19 sing Edge to G	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type 3 TFT REG[D8h]	Configuration	n Register 0	Default = 00000	1000h										F	Read/Write
31	30	29	POL Toggle P	osition bits 7-0	26	25	24	23	22	21	OE Pulse V	Vidth bits 7-0	18	17	16
- 01			DE Rising Edge		l .			20				/a	10		
15 Type 3 TFT	14 Configuration	13 Register 1	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[DCh]	gu-u.ioi		Default = 00000 DEV Falling Edg		7-0					ΧO	EV Rising Edg	ge Position bits	7-0	F	Read/Write
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	CPV Pulse \	Width bits 7-0	10	9	8	7	6	5	/COM Toggle	Position bits 7-	0 2	1	0
	PCLK Divide	Register	Default = 00000		10	y	°	,	0	3	4	3	2		Read/Write
		,	Jaun = 00000				n	/a							.Saurvinle
31	30	29	28	27	26	25	24	23	22	21 PCLK2 Divi	20 de Rate bits	19	18	17	16
15	14	13	12	n 11	/a 10	l 9	8	l 7	6		-0 4	3	PCLK1 Divide	Rate bits 3-0	0
.0						ŭ	,		ı	Ĭ		ı ğ	_		Ü

Type 3 TFT REG[E4h]	Partial Mode I		Control Regis											R	ead/Write
rico(c iii)			01ddit = 00000	00011			n	/a							oud Willo
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n,	/a		Partial	Mode Display	Refresh Cycle	bits 5-0			n/a		Partial Mode Display Enable	Partial Mode Display Type Select	Area 2 Display Enable	Area 1 Display Enable	Area 0 Display Enable
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type 3 TFT REG[E8h]	Partial Area 0		gister efault = 00000	0004						•	,	•			ead/Write
	/a	I			nd Position bits	5.0			/a	I	Port	tial Area O V E	nd Position bits		ead/vvrite
31	7a 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		29			art Position bit		24			21					16
15	/a 14	13	12 Part	lai Area U Y St	art Position bit	s 5-0 9	l 8	n 7	/a 6	5	Part 4	ai Area U X St	art Position bits	s 5-0 1	0
	Partial Area 1			- 11	10	9	8	/	О	5	4	3	2	1	U
REG[ECh]	r artial Arca 1		efault = 00000	000h										R	ead/Write
n	/a		Part	tial Area 1 Y E	nd Position bits	5-0		n	/a		Pari	tial Area 1 X E	nd Position bits	5-0	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n.	/a		Parti	ial Area 1 Y St	art Position bit	s 5-0		n	/a		Part	ial Area 1 X St	art Position bits	s 5-0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type 3 TFT REG[F0h]	Partial Area 2		gister efault = 00000	000h										R	ead/Write
	/a				nd Position bits	s 5-0		n	/a		Pari	tial Area 2 X E	nd Position bits		
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n,	/a		Parti	ial Area 2 Y St	art Position bit	s 5-0	l	n	/a		Part	ial Area 2 X St	art Position bits	s 5-0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type 3 TFT	Command Sto		efault = 00000	000h										D	ead/Write
INLO[I 4II]	n	/a	elault = 00000	00011					Command 1.5	Store bits 11-0				15	.eau/write
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		/a								Store bits 11-0	l				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type 3 TFT	Miscellaneou		efault = 00000	000h										D	ead/Write
KEG[I GII]			Cladit = 00000	00011			n	/a							Cad/VVIIIC
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		n	/a			Source Drive					n/a				Command Send Request
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

USB REGISTERS

Control Regis REG[4000h]	ster		Default = 00h												F	Read/Write
				ı/a					USBCIk	Software	USB	Endpoint 4	Endpoint 3	USB Setup	Reserved	Reserved
15	14	13	12	11	10	9		8	Enable 7	EOT 6	Enable 5	Stall 4	Stall 3	2	1	0
Interrupt Ena			12		10	3		-		, o	<u> </u>				'	
REG[4002h]			Default = 00h						Suspend	i	1	1	1	1	1	Read/Write
			n.	ı/a					Request	SOF Interrupt	Reserved	Endpoint 4 Interrupt	Endpoint 3 Interrupt	Endpoint 2 Interrupt	Endpoint 1 Interrupt	n/a
									Interrupt Enable	Enable		Enable	Enable	Enable	Enable	
15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
Interrupt Stat REG[4004h]	tus Register (Default = 00h												F	Read/Write
									Suspend	SOF		Endpoint 4	Endpoint 3	Endpoint 2	Endpoint 1	Upper
			n	/a					Request Interrupt	Interrupt Status	Reserved	Interrupt Status	Interrupt Status	Interrupt Status	Interrupt Status	Interrupt Active
15	14	13	12	11	10	9	1	8	Status 7	6	5	4	3	2	1	(read only)
Interrupt Ena			12	- "	10	9		0	,	8	5	4	3	2	'	U
REG[4006h]			Default = 00h													Read/Write
															Transmit FIFO	Receive FIFO
							n/a								Almost Empty	Almost Full Interrupt
															Interrupt Enable	Enable
15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
Interrupt Stat REG[4008h]	tus Register		Default = 00h													Read/Write
ALG[4008H]			ociauit = UUII												Transmit	Receive
							n/a								FIFO Almost	FIFO
															Empty Status	Almost Full Status
15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
Endpoint 1 In REG[4010h]	ndex Register		Default = 00h	<u> </u>					<u> </u>			<u> </u>		<u> </u>		Read Only
REG[4010h]		L	Default = 00h			n/:	1							Endp	oint 1 Index b	
15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
Endpoint 1 Re	eceive Mailb				·											D. 101
REG[4012h]		L	Default = 00h	ı/a							Endno	oint 1 Receive	Mailbox Data I	nits 7-0		Read Only
15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
Endpoint 2 In					ı											
REG[4018h]		L	Default = 00h			n/a								Endo	oint 2 Index b	Read/Write
15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
Endpoint 2 Tr	ransmit Maill			L	l							L				
REG[401Ah]		L	Default = 00h	/a					I		Endno	int 2 Transmit	Mailbox Data	hits 7-0	1	Read/Write
15	14	13	12	11	10	9		8	7	6	J 5	I 4	3	2	l 1	0
Endpoint 2 In	nterrupt Pollin			L	l							L		L		
REG[401Ch]			Default = FFh	/a					l I		Endnoi	int 2 Interrupt F	Polling Intonval	hite 7.0	F	Read/Write
15	14	13	12	11	10	9		8	7	6	5	4	3	2	l 1	0
Endpoint 3 Re		Data Registe	er													
REG[4020h]			Default = 00h	ı/a							Ende	point 3 Receive	FIFO Data hi	ts 7-0		Read Only
15	14	13	12	/a 11	10	9		8	7	6	5 Endp	4	3	2	1 1	0
Endpoint 3 Re		Count Regis	ter													
REG[4022h]			Default = 00h	/a							Endo	oint 3 Receive	FIFO Count h	its 7-0		Read Only
15	14	13	12	/a 11	10	9		8	7	6	5 Endp	4	3	2	l 1	0
Endpoint 3 Re		Status Regis	ter													
REG[4024h]		С	Default = 01h												1	Read/Write Receive
					n/a							Receive FIFO Flush	Receive FIFO	Receive FIFO	Receive FIFO Full	FIFO
												FIFU Flush	Overflow	Underflow	(read only)	Empty (read only)
15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
Endpoint 3 M REG[4026h]	laximum Pac		ister Default = 08h												F	Read/Write
				/a							End	dpoint 3 Max P	acket Size bits	7-0		
15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
Endpoint 4 Tr REG[4028h]	ransmit FIFO		er Default = 00h													Write Only
5[10201]				/a							Endp	oint 4 Transmi	it FIFO Data bi	its 7-0		
15	14	13	12	11	10	9		8	7	6	5	4	3	2	1	0
Endpoint 4 Tr REG[402Ah]	ransmit FIFO		ster Default = 00h													Read Only
NEG[40ZAN]				ı/a							Endo	oint 4 Transmit	t FIFO Count b	oits 7-0		Read Only
		40	12	11	10	9		8	7	6	J 5	I 4	3	1 2	1 1	0
15	14	13	12	11	10	9		0								

Endpoint 4 REG[402Ch]	Transmit FIFO		ster efault = 01h												Read/Write
										Transmit	Transmit	Transmit		Transmit	Transmit FIFO
				r	n/a					FIFO Valid	FIFO Flush	FIFO Overflow	Reserved	FIFO Full (read only)	Empty (read only)
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Endpoint 4 REG[402Eh]	Maximum Pac		ster efault = 08h											F	Read/Write
45	1	۱ ،۰		/a	1 40	1 .	1 .	_	I .		i	acket Size bits	1	1 .	1 .
15 Revision Re	14 egister	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[4030h]]	D	efault = 01h	/a				I			Chin Revis	sion bits 7-0			Read Only
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
USB Status REG[4032h]		D	efault = 00h							•				ı	Read/Write
			n	/a				Suspend	USB Endpoint 4	USB Endpoint 4	USB Endpoint 4	USB Endpoint 3	USB Endpoint 3	USB Endpoint 3	Endpoint 2
45	1 44	l 40	•	11	I 40	9	8	Control 7	STALL 6	NAK 5	ACK 4	STALL	NAK 2	ACK 1	Valid
	14 nter MSB Regi		12	11	10	9	8		ь	3	4	3	2		0
REG[4034h]		D	efault = 00h			n/a							Fram	ne Counter bits	Read Only s 10-8
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Frame Cour REG[4036h]	nter LSB Regi	ster D	efault = 00h												Read Only
			n	1			,		1			inter bits 7-0		1	
15 Extended R	14 Register Index	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[4038h]		D	efault = 00h	-				ı		-	dended Denie	ter Index bits 7	7.0	F	Read/Write
15	14	13	12	/a 11	10	9	8	7	6	5	tended Regis	3	2	1 1	0
Extended R REG[403Ah]	Register Data		efault = 04h												Read/Write
KEG[403AII]	ıı			/a						E	xtended Regis	ster Data bits 7	-0	'	(eau/vviite
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Vendor ID N REG[403Ah]		D	efault = 04h				Read/Write	Vendor ID L REG[403Ah]		D	efault = B8h				Read/Write
7	6	l 5	Vendor II	0 bits 15-8	2	1 4	l 0	7	6	5	Vendor I	D bits 7-0	2	I 4	0
Product ID	MSB			3	2	'		Product ID	LSB	<u> </u>		3	2	'	<u> </u>
REG[403Ah]	ı], Index[02h]	D	efault = 88h Product II	D bits 15-8			Read/Write	REG[403Ah]], Index[03h]	D	efault = 21h Product	ID bits 7-0			Read/Write
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Release Nu REG[403Ah]		D	efault = 01h				Read/Write	Release Nu REG[403Ah]		D	efault = 00h				Read/Write
	1	1	1	nber bits 15-8	1	1	1		ı			mber bits 7-0	1	1	ı
7 Receive FIF	6 FO Almost Full	5 I Threshold	4	3	2	1	0	7 Transmit FI	6 FO Almost Er	5 mpty Threshol	4 d	3	2	1	0
REG[403Ah]			efault = 3Ch	FIFO Almost	Full Throchol	d hite 5-0	Read/Write	REG[403Ah]			efault = 04h	FIFO Almost E	mnty Throcho	old hits 5-0	Read/Write
7	√a 6	5	4	3	Full Inresnol	1	0	7	/a 6	5	1 ransmit	3	empty inresno	1	0
USB Contro		ח	efault = 01h				Read/Write	Maximum P REG[403Ah]	ower Consum		efault = FAh				Read/Write
, 22.31	,,		n/a				USB String Enable					urrent bits 7-0			
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Packet Con REG[403Ah]	ntrol i], Index[0Ah]	D	efault = 00h				Read/Write	Reserved REG[403Ah]	, Index[0Bh]	D	efault = 00h				Read/Write
EP4 Data Toggle	EP3 Data Toggle	EP2 Data Toggle	EP1 Data Toggle	Reserved	Reserved	n/a	Reserved				n/a				Reserved
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
FIFO Contro REG[403Ah]	ol i], Index[0Ch]	D	efault = 00h				Read/Write								
			n/a				Transmit FIFO Valid								
					1 .	l 1	Mode 0								
7	6	5	4	3	2										
USBFC Inpu	ut Control Reg	gister	<u> </u>	3	2										Poad/M/rita
	ut Control Reg	gister	4 efault = 0Dh	3 n/a	2				USCMPEN	Reserved	Reserved	ISO	WAKEUP	Reserved	Read/Write Reserved
USBFC Inpu REG[4040h]	ut Control Reg	gister	<u> </u>		10	9	8	7	USCMPEN 6	Reserved 5	Reserved 4	ISO 3	WAKEUP 2		
USBFC Inpu REG[4040h]	ut Control Reg	gister D	efault = 0Dh	n/a			8	7						Reserved 1	Reserved
USBFC Inpu REG[4040h] 15	ut Control Reg	gister D	efault = 0Dh	n/a			8	7						Reserved 1	Reserved 0

REG[4044h]	atus / Pin Out		jister Default = depen	ds on USB inp	ut pin state									F	Read/Write
						n	/a							USBDETECT Input Pin Status (read only)	USBPUP Output Pin Status
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Interrupt Co REG[4046h]	ontrol Enable F		Default = 00h											F	Read/Write
				n/a					USB Host Connected	Reserved	Reserved	Reserved	Reserved	USBRESET	Reserved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Interrupt Co REG[4048h]	ontrol Enable F		Default = 00h											F	Read/Write
				n/a					USB Host Disconnect	Reserved	Device Configured	Reserved	Reserved	Reserved	INT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Interrupt Co REG[404Ah]	ontrol Status/C		r 0 Default = 00h											F	Read/Write
				n/a					USB Host Connected	Reserved	Reserved	Reserved	Reserved	USBRESET	Reserved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Interrupt Co REG[404Ch]	ontrol Status/C		r 1 Default = 00h											F	Read/Write
				n/a					USB Host Disconnect	Reserved	Device Configured	Reserved	Reserved	Reserved	INT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Interrupt Co REG[404Eh]	ontrol Masked		ster 0 Default = 00h												Read Only
				n/a					USB Host Connected	Reserved	Reserved	Reserved	Reserved	USBRESET	Reserved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Interrupt Co REG[4050h]	ontrol Masked		ster 1 Default = 00h												Read Only
				n/a					USB Host Disconnect	Reserved	Device Configured	Reserved	Reserved	Reserved	INT
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
USB Softwa REG[4052h]	re Reset Regi		Default = 00h												Write Only
			n.	/a						USB Soft	ware Reset (Co	ode = 1010010	00) bits 7-0		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
USB Wait St REG[4054h]	tate Register	D	Default = 00h											F	Read/Write
			n.	/a						n	/a			USB Wait S	State bits 1-0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Register Summary Issue Date: 02/01/21 S1D13A05 X40A-R-001-01

2D ACCELERATION (BitBLT) REGISTERS

		KAIIO	IN (DIL	DLI) r	REGIS	IEKS									
REG[8000h]	trol Register	D	efault = 00000	000h										Re	ead/Write
						n/a							Color Format Select	Dest Linear Select	Source Linear Select
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							n/a								BitBLT Enable
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 1	(WO) 0
15 BitBLT Stat	us Register				10	9	0		0	3	4	3	2		
REG[8004h]	n/a	D	efault = 00000		er of Used FIFO) Entries			/a		Numb	er of Free FIF	D Entries (0 me		ead Only
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				n/a			•		FIFO Not	FIFO Half	FIFO Full		n/a		BitBLT Busy
15	14	13	12	11	10	9	8	7	Empty 6	Full 5	Status 4	3	2	1 1	Status 0
BitBLT Con	nmand Regist	er			10	J	0		Ü	3	-	, ,	-		
REG[8008h] Default = 00000000h Read/Write n/a BitBLT ROP Code bits 3-0															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
45	1	۱ ،۰	م ا	l		n/a I	1 .	I -	l	l -	1 .			eration bits 3-0	1 .
	14 rce Start Addi		12	11	10	9	8	7	6	5	4	3	2	1	0
REG[800Ch		D	efault = 00000	000h	n/a							BitBLT Sou	rce Start Addr		ead/Write
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	ı	ı	1		1	BLT Source Sta		i .	ı	1	ı	ı		1
15 BitBLT Des	14 tination Start	13 Address Regi	12 ster	11	10	9	8	7	6	5	4	3	2	1	0
REG[8010h]			efault = 00000	000h	n/a						1	RitRLT Doctin	nation Start Ad	dress bits 20-16	ead/Write
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						BitBL	T Destination S	Start Address I	oits 15-0						
15 BitBLT Men	14 nory Address	13 Offset Regist	12 er	11	10	9	8	7	6	5	4	3	2	1	0
REG[8014h]			efault = 00000	000h				1						Re	ead/Write
31	30	29	28	27	26	25	24	n/a 23	22	21	20	19	18	17	16
		n/a							BitBLT Mem		Offset bits 10-0				
15 BitBLT Wid	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[8018h]		D	efault = 00000	000h										Re	ead/Write
31	30	29	28	27	26	25	24	n/a 23	22	21	20	19	18	17	16
		l	/a								idth bits 9-0				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[801Ch	ght Register]	D	efault = 00000	000h										Re	ead/Write
31	30	29	28	27	26	25	24	n/a 23	22	21	20	19	18	17	16
J1	30		/a		20	20					eight bits 9-0	10		.,	10
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[8020h]	kground Colo		efault = 00000	000h										Re	ead/Write
31	30	29	28	27	26	25	24	n/a 23	22	21	20	19	18	17	16
31	30				20		itBLT Backgrou					10	1 10	.,	10
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
REG[8024h]	eground Color		efault = 00000	000h										Re	ead/Write
31	30	29	28	27	26	25	24	n/a 23	22	21	20	19	18	17	16
31	30	23	20	21	20		SitBLT Foregrou				20	15	10	.,	10
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2D Accelerator (BitBLT) Data Memory Mapped Region Register AB16-AB0 = 10000h-1FFFEh, even addressesRead/Write															
24	30	20	20	27	26	25	1	ta bits 31-16	22	24	20	40	10	47	16
31	30	29	28	27	26	25	24 BitBLT Da	23 ata bits 15-0	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

S1D13A05 LCD/USB Companion Chip

13A05CFG Configuration Program

Document Number: X40A-B-001-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

13A05CFG	 . 5
S1D13A05 Supported Evaluation Platforms	.5
Installation	 .6
Usage	 .6
13A05CFG Configuration Tabs	.7
General Tab	 . 7
Preferences Tab	 . 9
Clocks Tab	 11
Panel Tab	 15
Panel Power Tab	 23
Registers Tab	 25
Direct Tab	 26
13A05CFG Menus	 28
Open	 28
Save	 29
Save As	 29
Configure Multiple	 30
Export	 31
Enable Tooltips	 32
Tooltip Delay	 32
ERD on the Web	 32
Update Common Controls	 32
About 13A05CFG	 32
Comments	 33

THIS PAGE LEFT BLANK

13A05CFG

13A05CFG is an interactive Windows® program that calculates register values for a user-defined S1D13A05 configuration. The configuration information can be used to directly alter the operating characteristics of the S1D13A05 utilities or any program built with the Hardware Abstraction Layer (HAL) library. Alternatively, the configuration information can be saved in a variety of text file formats for use in other applications.

Note

This program is a Windows desktop application suitable for configuring software for a given implementation of an Epson LCD controller. However, it is not a display driver for any Windows desktop operating system. Epson does not provide display drivers for any of the Windows desktop operating systems.

S1D13A05 Supported Evaluation Platforms

13A05CFG runs on PC system running Windows 9x/ME/XP/NT/2000 and can modify Win32 .exe files and .s9 format files.

Installation

Create a directory for **13a05cfg.exe** and copy the files **13a05cfg.exe** and **panels.def** to that directory. **Panels.def** contains configuration information for a number of panels and must reside in the same directory as **13a05cfg.exe**.

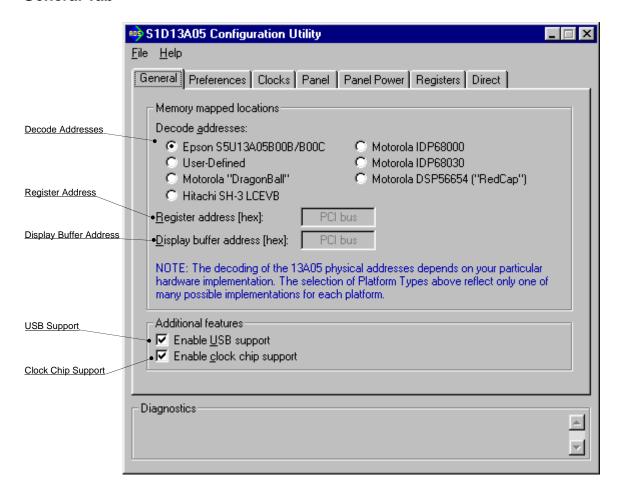
Usage

To start 13A05CFG from the Windows desktop, double-click on the My Computer icon and run the program **13a05cfg.exe** from the installed directory.

To start 13A05CFG from a Windows command prompt, change to the directory **13a05cfg.exe** was installed to and type the command **13A05cfg**.

The basic procedure for using 13A05CFG is:

- 1. Start 13A05CFG as described above.
- 2. Open an existing file to serve as a starting reference point (this step is optional).
- 3. Modify the configuration. For specific information on editing the configuration, see "13A05CFG Configuration Tabs" on page 7.
- 4. Save the new configuration. The configuration information can be saved in two ways; as an ASCII text file or by modifying an executable image on disk.


Several ASCII text file formats are supported. Most are formatted C header files used to build display drivers or standalone applications.

Utility files based on the Hardware Abstraction Layer (HAL) can be modified directly by 13A05CFG.

13A05CFG Configuration Tabs

13A05CFG displays a series of tabs which can be selected at the top of the main window. Each tab allows the configuration of a specific aspect of S1D13A05 operation. The following sections describe the purpose and use of each of the tabs.

General Tab

The General tab contains settings that define the S1D13A05 operating environment.

Decode Addresses

Selecting one of the listed evaluation platforms changes the values for the "Register address" and "Display buffer address" fields. The values used for each evaluation platform are examples of possible implementations as used by the Epson evaluation board. If your hardware implementation differs from the addresses used, select the User-Defined option and enter the correct values for "Register address" and "Display buffer address".

Note

When "Epson S5U13A05B00B/B00C Evaluation Board" is selected, the register and display buffer addresses are blanked because the evaluation board uses the PCI interface and the decode addresses are determined by the system BIOS during boot-up.

Register Address The physical address of the start of register decode

space (in hexadecimal).

This field is automatically set according to the Decode Address unless the "User-Defined" decode address is

selected.

Display Buffer Address The physical address of the start of display buffer

decode space (in hexadecimal).

This field is automatically set according to the Decode Address unless the "User-Defined" decode address is

selected.

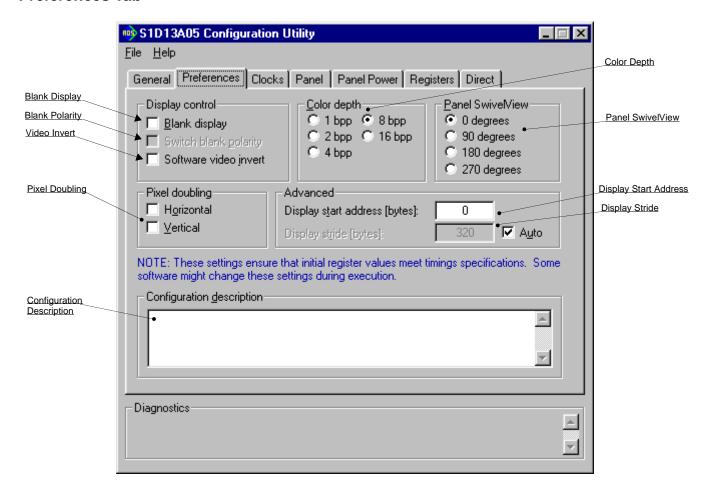
USB Support The S1D13A05 contains a USB client controller. If this

box is checked, chip initialization configures

GPIO[7:4] for use by the USB controller. For further information on the S1D13A05 USB implementation, see the *S1D13A05 Hardware Functional Specification*,

document number X40A-A-001-xx.

Clock Chip Support The S1D13A05 evaluation board implements a Cypress


ICD2061A Clock Synthesizer which can be used to generate CLKI and CLKI2. When this box is checked, GPIO[3:1] are reserved for Clock Synthesizer support. Selecting a HR-TFT, Type 2 TFT, Type 3 TFT, or Casio TFT panel will disable this feature as the HR-TFT

requires GPIO[3:0].

This feature is only available when using the

S1D13A05 evaluation board.

Preferences Tab

The Preference tab contains settings pertaining to the initial display state. During runtime these settings may be changed.

Blank Display The S1D13A05 can blank the LCD display by forcing

all FPDAT lines used by the panel to either zeros or ones (as selected by the Switch Blank Polarity option).

When this box is checked the display is blanked.

Blank Polarity When this box is checked the FPDAT lines are forced to

ones instead of zeros when the LCD display is blanked. When the box remains un-checked the FPDAT lines are forced to zeros when the LCD display is blanked. This

option only has an effect when Blank Display is

enabled.

Video Invert The S1D13A05 can invert the display data going to the

LCD panel. When this box is checked, video data is inverted. Display data is inverted after the Look-Up

Table, which means colors are truly inverted.

Pixel Doubling These settings allow the Pixel Doubling feature to be

configured independently in the horizontal and vertical dimensions. Pixel doubling causes each pixel of display data to be extended to two pixels. This feature can be useful for using existing software on larger panels.

Horizontal When this box is checked, pixel doubling in the

horizontal direction is enabled. Note that the S1D13A05 does not support horizontal pixel doubling for SwivelView 90° or 270° modes.

Vertical When this box is checked, pixel doubling in the vertical

direction is enabled. Note that the S1D13A05 does not support vertical pixel doubling for SwivelView 90°

or 270° modes.

Configuration Description This field allows the user to enter a description for a

particular configuration. This field is saved in the HAL information and is displayed when a HAL-based utility

is run.

Color Depth Sets the initial color depth on the LCD panel. If there is

insufficient display buffer for the selected width and height then a warning is displayed in the diagnostic

area.

Panel SwivelView The S1D13A05 SwivelView feature is capable of

rotating the image displayed on an LCD panel 90°, 180°, or 270° in a counter-clockwise direction. This setting determines the initial orientation of the panel.

Advanced These settings allow fine tuning of the start address and

stride. The start address defines the offset into the display buffer (video memory) of the pixel which will be displayed in the top left corner of the panel. Stride defines the number of bytes required to step from the first pixel on one row to the first pixel on the next row (i.e. 160 pixel wide display at 16 bpp requires 320 bytes

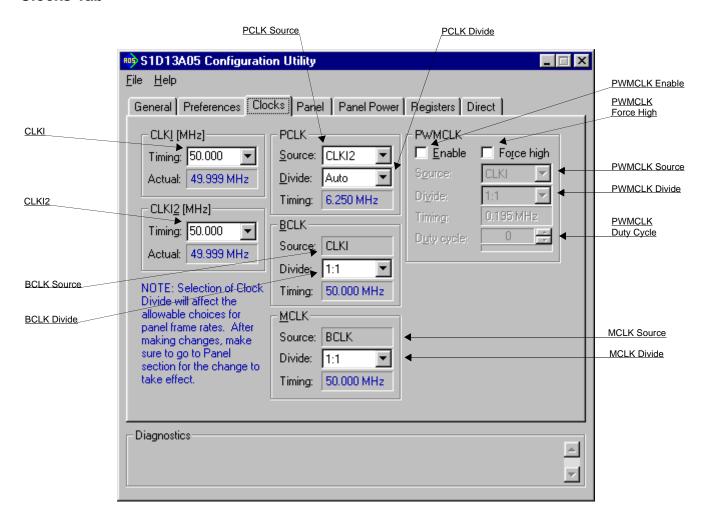
per horizontal row).

Display Start Address This option sets the start address for the main window

of the panel. Typically the start address is set to zero.

Display Stride This option sets the stride for the main window of the

panel. To set the stride equal to the size of the display, select the "auto" box. To increase the stride, uncheck


the "auto" box and enter the desired stride.

Note

The stride value must be greater than or equal to the number of bytes required by one line of

display memory.

Clocks Tab

The Clocks tab simplifies the selection of input clock frequencies and the sources of internal clocking signals. For further information regarding clocking and clock sources, refer to the *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx.

The CLKI and CLKI2 frequencies represent clock values the system provides to the S1D13A05. It is the responsibility of the system designer to ensure that the correct clock frequencies are supplied to the S1D13A05. The S1D13A05 may use one or two clock sources. Two clock sources allow greater flexibility in the selection of display type and memory speed.

Note

Changing clock values may modify or invalidate Panel settings. Confirm all settings on the Panel tab after changing any clock settings.

When "Enable clock chip support" is selected on the General Tab, 13A05CFG performs calculations to determine the nearest actual clock frequency generated by the programmable clock. When clock chip support is disabled, 13A05CFG assumes the input clocks will be derived from a clock source of exactly the indicated frequency.

CLKI This setting determines the frequency of CLKI.

Timing Set this value by selecting a preset frequency from the

drop down list or entering the desired frequency (MHz)

in the edit box.

Actual This field displays the actual value of the CLKI

frequency. If "Enable clock chip support" is selected on the General Tab, then this value may differ slightly

from the value entered in the timing control.

CLKI2 This setting determines the frequency of CLKI2.

Timing Set this value by selecting a preset frequency from the

drop down list or entering the desired frequency (MHz)

in the edit box.

Actual This field displays the actual value of the CLKI2

frequency. If "Enable clock chip support" is selected on the General Tab, then this value may differ slightly from the value entered in the timing control

from the value entered in the timing control.

PCLK These settings select the clock source and divisor for the

internal pixel clock (PCLK).

Source Selects the PCLK source. Possible sources include

CLKI, CLKI2, BCLK or MCLK. Note that BCLK and MCLK may be previously divided from CLKI or

CLKI2.

Divide Specifies the divide ratio for the clock source. The

divide ratio is applied to the PCLK source to derive

PCLK.

Selecting "Auto" for the divisor allows the configuration program to calculate the best clock divisor.
Unless a very specific clocking is being specified, it is

best to leave this setting on "Auto".

Timing This field shows the actual PCLK used by the configu-

ration process.

BCLK These settings select the clock source and divisor for the

internal bus interface clock (BCLK).

Source The BCLK source is always CLKI.

Divide Specifies the divide ratio for the clock source. The

divide ratio is applied to the BCLK source to derive

BCLK.

Timing This field shows the actual BCLK frequency used by

the configuration process.

MCLK These settings select the clock source and input clock

divisor for the internal memory clock (MCLK). For the best performance, MCLK should be set as close to the

maximum (50 MHz) as possible.

Source The MCLK source is always BCLK.

Divide Specifies the divide ratio for the clock source. The

divide ratio is applied to the MCLK source to derive

MCLK.

This divide ratio should be left at 1:1 unless the

resultant MCLK is greater that 50MHz.

Timing This field shows the actual MCLK frequency used by

the configuration process.

PWMCLK These controls configure various PWMCLK settings.

The PWMCLK is the internal clock used by the Pulse

Width Modulator for output to the panel.

Enable When this box is checked, the PWMCLK circuitry is

enabled.

Force High The signal PWMOUT is forced high when this box is

checked. When not checked, PWMOUT will be low if PWM is not enabled or will change state according to

the configured values when PWM is enabled.

Source Selects the PWMCLK source. Possible sources include

CLKI, CLKI2, MCLK, and PCLK.

Divide Specifies the divide ratio for the clock source. The

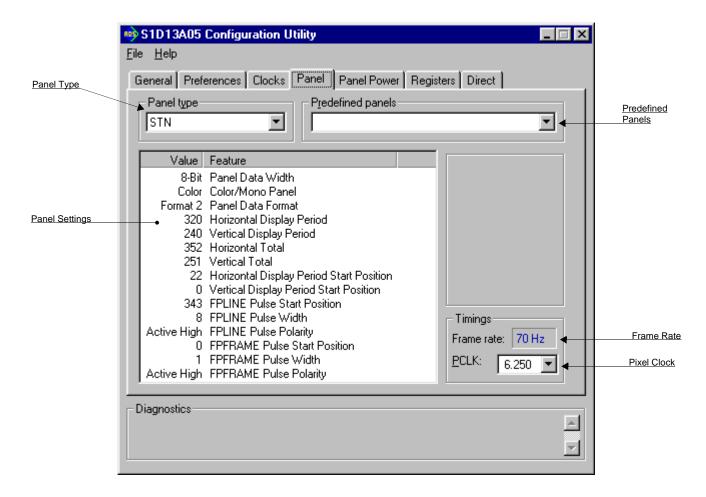
divide ratio is applied to the PWMCLK source to derive

PWMCLK.

Note

After this divide is applied, PWMCLK is further divided by 256 to achieve the final PWMCLK

frequency.


Timing This field shows the actual PWMCLK frequency used

by the configuration process.

Duty Cycle Selects the number of cycles that PWMOUT is high out

of 256 clock periods.

Panel Tab

The S1D13A05 supports several panel types. This tab allows configuration of most panel related settings such as dimensions, type and timings.

Panel Type Selects the panel type (i.e. STN, TFT, HR-TFT, etc).

Some "Panel Settings" options may change or become unavailable when this control is changed. Re-confirm all settings on this tab after the Panel Type is changed.

Predefined Panels

13A05CFG uses a file (panels.def) which contains predefined settings for a number of LCD panels. If the file panels.def is present in the same directory as

13A05cfg.exe, the predefined panels are available in the drop-down list. If a panel is selected from the list,

13A05CFG pre-configures its settings to nominal panel

values.

Panel Settings

This area allows the user to configure a number of panel specific settings. Items listed here change according to the panel type selected.

The following settings can be changed within this pane. For more details on any of the following settings, see the *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx.

Panel Data Width

Selects the panel data width. Panel data width is the number of bits of data transferred to the LCD panel on each clock cycle and shouldn't be confused with color depth which determines the number of displayed colors.

When a passive panel type is selected, the available options are 4, 8, and 16 bit. When an active panel type (TFT/HR-TFT) is selected, the available options are 9, 12, and 18 bit.

Color/Mono Panel

Selects between a monochrome or color panel.

Panel Data Format

Selects the color STN panel data format. This option only applies to 8-bit color STN panels. Most new panels use the format 2 data format.

See the *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx, for description of format 1 / format 2 data formats.

Horizontal and Vertical Display Period

These fields specify the panel width and height. A number of common widths and height are available in the selection boxes. If the width/height of your panel is not listed, enter the actual panel dimensions into the edit field.

For passive panels, manually entered pixel widths must be a minimum of 32 pixels and can be increased by multiples of 16. For TFT panels, manually entered pixel widths must be a minimum of 8 pixels and can be increased by multiples of 8. If a value is entered that does not meet these requirements, 13A05CFG rounds up the value to the next allowable width. The changed value is reported in the diagnostics portion of the window.

Horizontal Total

Sets the number of pixels on each line of the display. This value is the sum of both the visible (Horizontal Display Period) and non-visible (Horizontal Non-Display Period) values. It is recommended that the automatically generated values be used. However, manual adjustment may be used to improve the quality of the displayed image by fine tuning the horizontal display total.

Refer to *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx, for a complete description of the Display Total settings.

Note

If the horizontal total is set too small, 13A05CFG will display a yellow warning message in the diagnostics portion of the window.

Vertical Total

Sets the number of lines of the display. This value is the sum of both the visible (Vertical Display Period) and non-visible (Vertical Non-Display Period) values. It is recommended that the automatically generated values be used. However, manual adjustment may be used to improve the quality of the displayed image by fine tuning the vertical display total.

Refer to *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx, for a complete description of the Display Total settings.

Note

If the vertical total is set too small, 13A05CFG will display a yellow warning message in the diagnostics portion of the window.

Horizontal Display Period Start Position

It is recommended that the automatically generated values be used. However, manual adjustment may be used to improve the quality of the displayed image by fine tuning the horizontal display period start positions.

Refer to *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx, for a complete description of the Display Start settings.

Note

If the horizontal display start values are set to values that violate the S1D13A05 Hardware

Functional Specification, 13A05CFG will display a yellow warning message in the diagnostics portion of the window.

Vertical Display Period Start Position

It is recommended that the automatically generated values be used. However, manual adjustment may be used to improve the quality of the displayed image by fine tuning the vertical display period start positions.

Refer to *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx, for a complete description of the Display Start settings.

Note

If the vertical display start values are set to values that violate the *S1D13A05 Hardware Functional Specification*, 13A05CFG will display a yellow warning message in the diagnostics portion of the window.

FPLINE Start Position Specifies the delay (in pixels) from the start of the

horizontal non-display period to the leading edge of the

FPLINE pulse.

FPLINE Pulse Width Specifies the width (in pixels) of the horizontal sync

signal (FPLINE).

FPLINE Pulse Polarity Specifies the polarity (active high or active low) of the

horizontal sync signal (FPLINE).

Note

Selecting the wrong pulse polarity may damage

the panel.

FPFRAME Start Position Specifies the delay (in lines) from the start of the

vertical non-display period to the leading edge of the

FPFRAME pulse.

FPFRAME Pulse Width Specifies the pulse width (in lines) of the vertical sync

signal (FPFRAME).

FPFRAME Pulse Polarity Specifies the polarity (active high or active low) of the

vertical sync signal (FPFRAME).

Note

Selecting the wrong pulse polarity may damage

the panel.

CLS Pulse Width	Sets the width of CLS signals in PCLKs. This setting is used for HR-TFT panels only.
PS1 Rising Edge	Selects the number of PCLKs between the CLS falling edge and the PS1 rising edge. This setting is used for HR-TFT panels only.
PS2 Rising Edge	Selects the number of PCLKs between the CLS falling edge and the PS2 rising edge. This setting is used for HR-TFT panels only.
PS2 Toggle Width	Sets the width of the PS2 signal before toggling (in number of PCLKs). This setting is used for HR-TFT panels only.
PS3 Signal Width	Sets the width of the PS3 signal in PCLKs. This setting is used for HR-TFT panels only.
REV Toggle Point	Sets the width in PCLKs to toggle the REV signal to LP rising edge. This setting is used for HR-TFT panels only.
PS1/2 End	Allows the PS signal to continue into vertical non-display period (in lines). This setting is used for HR-TFT panels only.
POL Type	Selects how often the POL signal is toggled (as either ever line or every frame). This setting is used for Type 2 TFT panels only.
AP Pulse Width	Selects the AP width used for the TFT Type 2 interface (in PCLKs). This setting is used for Type 2 TFT panels only.
AP Rising Edge Position	Controls the TFT Type 2 AC timing parameter from the rising edge of FPLINE (STB) to the rising edge of GP101 (AP) (in PCLKs). This setting is used for Type 2 TFT panels only.
VCLK Hold	Controls the AC timing parameter from the rising edge of FPLINE (STB) to the falling edge of GPIO0 (VCLK) (in PCLKs). This setting is used for Type 2 TFT panels only.
VCLK Setup	Controls the AC timing parameter from the rising edge of GPIO0 (VCLK) to the rising edge of FPLINE (STB)

(in PCLKs). This setting is used for Type 2 TFT

panels only.

POL Toggle Position Sets the toggle position of the POL signal in 2 pixel

resolution. This setting is used for Type 3 TFT panels

only.

OE Pulse Width Sets the pulse width of the OE signal in 2 pixel

resolution. This setting is used for Type 3 TFT panels

only.

OE Rising Edge Position Sets the rising edge position of the OE signal in 2 pixel

resolution. This setting is used for Type 3 TFT panels

only.

XOEV Falling Edge Position Sets the falling edge position of the XOEV signal in 2

pixel resolution. This setting is used for Type 3 TFT

panels only.

XOEV Rising Edge Position Sets the rising edge position of the XOEV signal in 2

pixel resolution. This setting is used for Type 3 TFT

panels only.

CPV Pulse Width Position Sets the pulse width of the CPV in 2 pixel resolution.

This setting is used for Type 3 TFT panels only.

VCOM Toggle Position Sets the toggle position of the VCOM signal in 2 pixel

resolution. This setting is used for Type 3 TFT panels

only.

PCLK2 Divide Rate Selects the divide rate for PCLK2 (GPO5). **This setting**

is used for Type 3 TFT panels only.

PCLK1 Divide Rate Selects the divide rate for PCLK1 (GPO4). **This setting**

is used for Type 3 TFT panels only.

Partial Mode Display Refresh Cycle Selects the refresh cycle for the Partial Mode

Display (as value from 0 to 63). **This setting is used for**

Type 3 TFT panels only.

Partial Mode Display Enable Enables the Partial Mode Display. This setting is used

for Type 3 TFT panels only.

Partial Mode Display Type Selects the type of Partial Mode Display. Stripe means

that only the Y Position registers are used in calculating the partial display, where Block means that both the X and Y Position registers are used. **This setting is used**

for Type 3 TFT panels only.

Partial Mode Display Area 2 Enable Enables the Area 2 for Partial Mode Display.

This setting is used for Type 3 TFT panels only.

- Partial Mode Display Area 1 Enables the Area 1 for Partial Mode Display.

 This setting is used for Type 3 TFT panels only.
- Partial Mode Display Area 0 Enables the Area 0 for Partial Mode Display.

 This setting is used for Type 3 TFT panels only.
- Partial Area 0 Y End PositionSelects the Y End Position of Partial Area 0 in 8 line resolution. **This setting is used for Type 3 TFT panels only.**
- Partial Area 0 X End PositionSelects the X End Position of Partial Area 0 in 8 pixel resolution. **This setting is used for Type 3 TFT panels only.**
- Partial Area 0 Y Start PositionSelects the Y Start Position of Partial Area 0 in 8 line resolution. **This setting is used for Type 3 TFT panels only.**
- Partial Area 0 X Start PositionSelects the X Start Position of Partial Area 0 in 8 pixel resolution. **This setting is used for Type 3 TFT panels only.**
- Partial Area 1 Y End PositionSelects the Y End Position of Partial Area 1 in 8 line resolution. **This setting is used for Type 3 TFT panels only.**
- Partial Area 1 X End PositionSelects the X End Position of Partial Area 1 in 8 pixel resolution. **This setting is used for Type 3 TFT panels only.**
- Partial Area 1 Y Start PositionSelects the Y Start Position of Partial Area 1 in 8 line resolution. **This setting is used for Type 3 TFT panels only.**
- Partial Area 1 X Start PositionSelects the X Start Position of Partial Area 1 in 8 pixel resolution. **This setting is used for Type 3 TFT panels only.**
- Partial Area 2 Y End PositionSelects the Y End Position of Partial Area 2 in 8 line resolution. **This setting is used for Type 3 TFT panels only.**
- Partial Area 2 X End PositionSelects the X End Position of Partial Area 2 in 8 pixel resolution. **This setting is used for Type 3 TFT panels only.**
- Partial Area 2 Y Start PositionSelects the Y Start Position of Partial Area 2 in 8 line resolution. **This setting is used for Type 3 TFT panels only.**

Partial Area 2 X Start PositionSelects the X Start Position of Partial Area 2 in 8 pixel

resolution. This setting is used for Type 3 TFT panels

only.

Command 1 Store Stores command 1 for the TFT Type 3 Interface. **This**

setting is used for Type 3 TFT panels only.

Command 0 Store Stores command 0 for the TFT Type 3 Interface. **This**

setting is used for Type 3 TFT panels only.

Source Driver IC Number Selects the number of Source Driver ICs. This setting

is used for Type 3 TFT panels only.

Command Send Request Enables the S1D13A05 to send the command in the next

non-display period. This setting is used for Type 3

TFT panels only.

GPCK Rising Edge to STH Pulse Sets the number of PCLKs from GPCK rising

edge to STH pulse. This setting is used for Casio TFT

panels only.

GRES Falling Edge to FRP Toggle Point Sets the number of PCLKs from GRES

falling edge to FRP toggle point. This setting is used

for Casio TFT panels only.

GRES Falling Edge to GPCK Rising Edge Sets the number of PCLKs from GRES

falling edge to GPCK rising edge. This setting is used

for Casio TFT panels only.

GPCK Rising Edge to GRES Rising Edge Sets the number of PCLKs from GPCK

rising edge to GRES rising edge. This setting is used

for Casio TFT panels only.

Frame Rate The Frame Rate (in Hz) is calculated and displayed

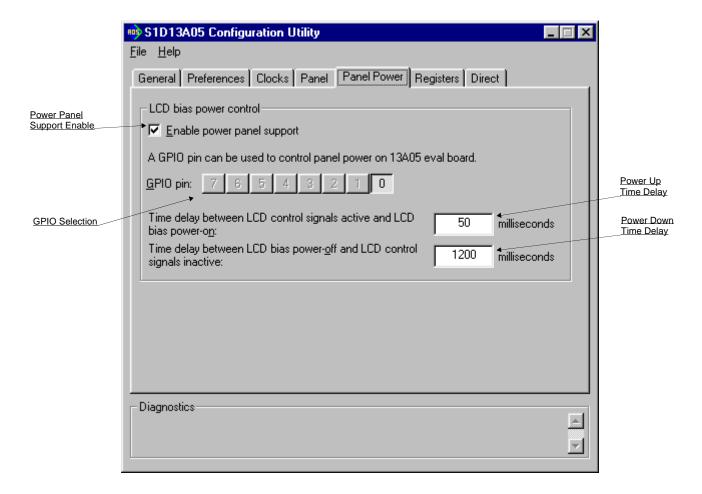
> based on the current settings as selected on the various tabs. If the resulting Frame Rate is not acceptable,

adjust the settings to change the frame rate.

Panel dimensions are fixed therefore frame rate can

only be adjusted by changing either the PCLK

frequency or display total values.


Pixel Clock Select the desired Pixel Clock (in MHz) from the drop-

down list. The range of frequencies displayed is

dependent on the PCLK source and divide settings as

selected on the Clocks tab.

Panel Power Tab

The S1D13A05 evaluation board is designed to use a GPIO signal to control the LCD bias power. The following settings configure panel power support.

Power Panel Support Enable When this box is checked, the LCD bias power to the

panel is controlled by the selected GPIO pin. When this box is unchecked, the LCD bias power must be controlled by the CPU or some other means.

GPIO Selection This setting selects the GPIO pin used to control the

LCD bias power. The default is GPIO0 (GPIO0 is used

on the S1D13A05 evaluation board).

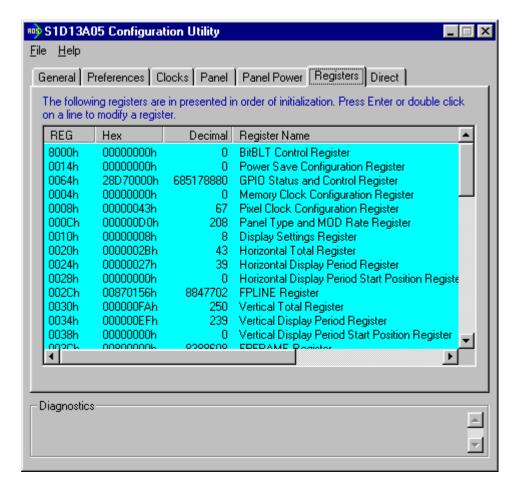
Power Up Time Delay This setting controls the maximum time delay between

when the S1D13A05 control signals are turned on and the LCD panel is powered-on. This setting must be configured according to the specification for the panel

being used.

This value is used by Epson evaluation software designed for the S1D13A05 evaluation board.

Power Down Time Delay This setting controls the minimum time delay between

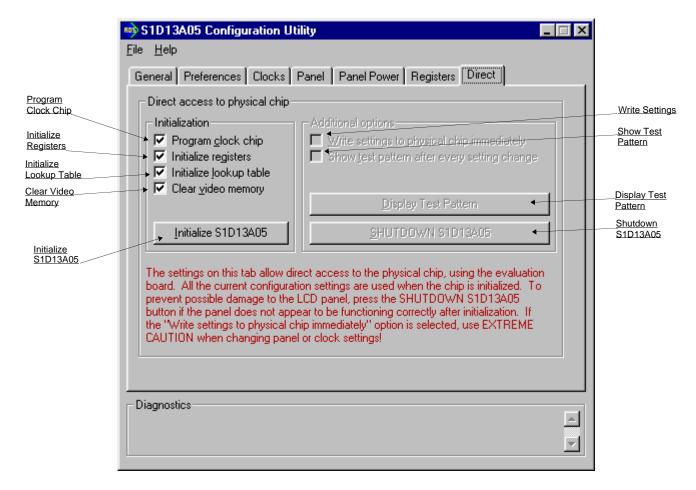

when the LCD panel is powered-off and when the S1D13A05 control signals are turned off. This setting must be configured according to the specification for

the panel being used.

This value is used by Epson evaluation software designed for the S1D13A05 evaluation board.

S1D13A05 X40A-B-001-01

Registers Tab


The Registers tab allows viewing and editing of the S1D13A05 register values.

Scroll up and down the list to view register values which are determined from the configuration settings of the previous tabs. Hovering over a register displays a pop-up help box which describes the functionality of the bits in that register. Register settings may be changed by double-clicking on the register in the listing. **Manual changes to the registers are not checked for errors, so caution is warranted when directly editing these values.** It is strongly recommended that the *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx be referred to before making any manual register settings.

Note

Manually entered values may be changed by 13A05CFG if further configuration changes are made on other tabs. In this case, the user is notified.

Direct Tab

This tab allows the user to directly interact with the S1D13A05 configuration process. The effect of register changes on the displayed image can be observed before writing any configuration files. Fine tuning adjustments may be made to achieve the best possible image on the panel.

Using this tab requires that a S1D13A05 evaluation board is installed in the computer and a panel is attached.

Initialization	These settings define which actions will be carried out when the Initialize S1D13A05 button is clicked.
Program Clock Chip	The S5U13A05B00C evaluation board design includes a clock chip which can provide the signals for CLKI and CLKI2. Checking this box will include programming the clock chip as part of the S1D13A05 initialization.
Initialize Registers	When this box is checked the S1D13A05 registers will be programmed to their configured values as part of the

initialization.

Initialize Lookup Table When this box is checked the S1D13A05 Lookup Table

is programmed as part of the initialization.

Clear Video Memory When this box is checked the S1D13A05 display buffer

will be cleared (set to zeros) as part of the initialization.

Initialize S1D13A05 Clicking this button initializes the S1D13A05

according to the options selected.

Additional Options After initializing the S1D13A05, these further options

become available.

Write Settings This setting should be used with caution. Checking this

box will cause setting changes on any tab to immedi-

ately update the associated register(s).

Show Test Pattern Checking this box will update the test pattern in the

display buffer after every setting change. This is useful when fine tuning panel settings as the results of the

change are immediately visible.

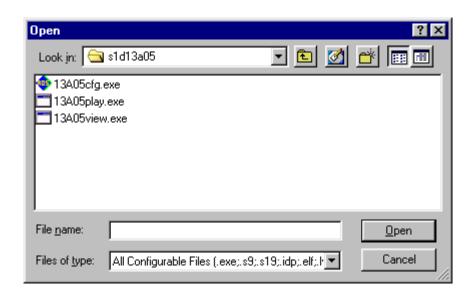
Display Test Pattern Clicking this button causes 13A05CFG to draw a test

pattern into display memory. The pattern is based on the

configured width, height, rotation and color depth.

Shutdown S1D13A05 Clicking this button shuts down the S1D13A05. This

feature is necessary should a setting change appear to be


damaging or harmful to the attached panel.

13A05CFG Menus

The following sections describe each of the options in the File and Help menus.

Open...

From the Menu Bar, select "File", then "Open..." to display the Open File Dialog Box.

The Open option allows 13A05CFG to read the configuration information from programs based on the HAL library. When 13A05CFG opens a file it scans the file for an identification string, and if found, reads the configuration information. This feature may be used to quickly arrive at a starting point for register configuration. The only requirement is that the file being opened must contain a valid S1D13A05 HAL library information block.

13A05CFG supports a variety of executable file formats. Select the file type(s) 13A05CFG should display in the Files of Type drop-down list and then select the filename from the list and click on the Open button.

Note

13A05CFG is designed to work with utilities programmed using a given version of the HAL. If the configuration structure contained in the executable file differs from the version 13A05CFG expects the Open will fail and an error message is displayed. This may happen if the version of 13A05CFG is substantially older, or newer, than the file being opened.

Save


From the Menu Bar, select "File", then "Save" to initiate the save action. The Save menu option allows a fast save of the configuration information to a file that was opened with the Open menu option.

Note

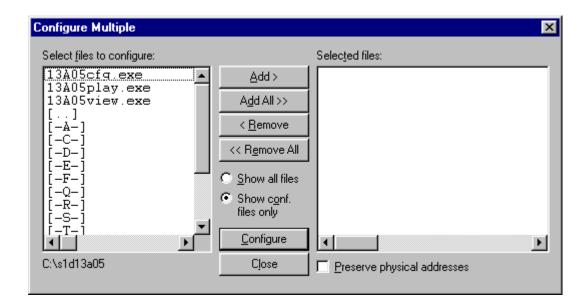
This option is only available once a file has been opened.

Save As...

From the Menu Bar, select "File", then "Save As..." to display the Save As Dialog Box.

"Save as" is very similar to Save except a dialog box is displayed allowing the user to name the file before saving.

Using this technique a tester can configure a number of files differing only in configuration information and name (e.g. BMP60Hz.EXE, BMP72Hz.EXE, BMP75Hz.EXE where only the frame rate changes in each of these files).


Note

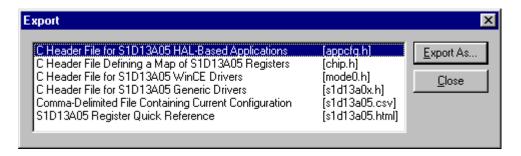
When "Save As" is selected then an exact duplicate of the file as opened by the "Open" option is created containing the new configuration information.

Configure Multiple

After determining the desired configuration, "Configure Multiple" allows the information to be saved into one or more executable files built with the HAL library.

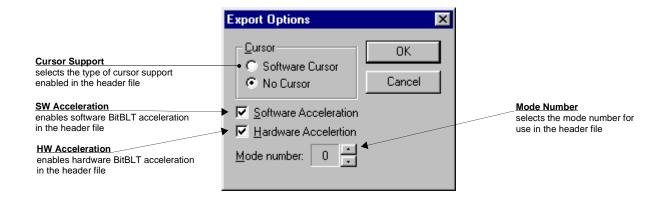
From the Menu Bar, select "File", then "Configure Multiple" to display the Configure Multiple Dialog Box. This dialog box is also displayed when a file(s) is dragged onto the 13A05CFG window.

The left pane lists files available for configuration; the right pane lists files that have been selected for configuration. Files can be selected by clicking the "Add" or "Add All" buttons, double clicking any file in the left pane, or by dragging the file(s) from Windows Explorer.


Selecting "Show all files" displays all files in the selected directory, whereas selecting "Show conf. files only" will display only files that can be configured using 13A05CFG (i.e. .exe, .s9).

Checking "Preserve Physical Addresses" instructs 13A05CFG to use the register and display buffer address values the files were previously configured with. Addresses specified in the General Tab are discarded. This is useful when configuring several programs for various hardware platforms at the same time. For example, if configuring PCI, MPC and IDP based programs at the same time for a new panel type, the physical addresses for each are retained. This feature is primarily intended for the test lab where multiple hardware configurations exist and are being tested.

Export


After determining the desired configuration, "Export" permits the user to save the register information as a variety of ASCII text file formats. The following is a list and description of the currently supported output formats:

- a C header file for use in writing HAL library based applications.
- a C header file which lists each register and the value it should be set to.
- a C header file for use in developing Window CE display drivers.
- a C header file for use in developing display drivers for other operating systems such as Linux, QNX, and VxWorks WindML.
- a comma delimited text file containing an offset, a value, and a description for each S1D13A05 register.
- a .html based reference guide to the S1D13A05 registers.

After selecting the file format, click the "Export As..." button to display the file dialog box which allows the user to enter a filename before saving. Clicking the "Preview" button uses Notepad or the web browser to display a copy of the file to be saved.

When the **C Header File for S1D13A05 WinCE Drivers** option is selected as the export type, additional options are available and can be selected by clicking on the Options button. The options dialog appears as:

Enable Tooltips

Tooltips provide useful information about many of the items on the configuration tabs. Placing the mouse pointer over nearly any item on any tab generates a popup window containing helpful advice and hints.

To enable/disable tooltips check/uncheck the "Tooltips" option form the "Help" menu.

Note

Tooltips are enabled by default.

Tooltip Delay

This option sets the length of time the cursor must be left over an item before its associated tooltip is displayed.

ERD on the Web

This "Help" menu item is actually a hotlink to the Epson Research and Development website. Selecting "Help" then "ERD on the Web" starts the default web browser and points it to the ERD product web site.

The latest software, drivers, and documentation for the S1D13A05 is available at this website.

Update Common Controls

13A05CFG uses some of the latest common control DLLs. On systems using earlier versions of the common controls, certain controls may not appear correctly. This option updates the Common Controls required for proper operation of 13A05CFG.

About 13A05CFG

Selecting the "About 13A05CFG" option from the "Help" menu displays the about dialog box for 13A05CFG. The about dialog box contains version information and the copyright notice for 13A05CFG.

Comments

- On any tab particular options may be grayed out if selecting them would violate the operational specification of the S1D13A05 (i.e. Selecting TFT or STN on the Panel tab enables/disables options specific to the panel type).
- The file **panels.def** is a text file containing operational specifications for several supported, and tested, panels. This file can be edited with any text editor.
- 13A05CFG allows manually altering register values. The manual changes may violate memory and LCD timings as specified in the *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx. If this is done, unpredictable results may occur. Epson Research and Development, Inc. does not assume liability for any damage done to the display device as a result of configuration errors.
- Yellow diagnostic warnings are designed to draw attention to important errors in the configuration and should be corrected before saving the configuration.
- 13A05CFG can be configured by making a copy of the file 13A05cfg.exe and configuring the copy. It is not possible to configure the original while it is running. The newly saved information becomes the default configuration for that copy of 13A05cfg.exe.

THIS PAGE LEFT BLANK

S1D13A05 LCD/USB Companion Chip

13A05PLAY Diagnostic Utility

Document Number: X40A-B-002-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

13A05PLAY

13A05PLAY is a diagnostic utility which allows read/write access to all the registers and display buffer of the S1D13A05. Commands are received from the standard input device, and messages are sent to the standard output device. On Intel platforms the console provides standard input/output. For most embedded systems the serial device provides these functions.

Commands may be entered interactively by a user, or be executed from a script file. Scripting is a powerful feature which allows command sequences to be used repeatedly without re-entry.

Note

This program is a utility program for testing and evaluating Epson LCD controllers. It is not a display driver for any operating system but a utility program intended to aid in testing and evaluating Epson LCD controller hardware.

This user manual is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

S1D13A05 Supported Evaluation Platforms

13A05PLAY is available as an executable for PCs running Windows® 9x/ME/NT/2000/XP and as C source code which can be modified and recompiled to allow 13A05PLAY to run on other platforms.

Note

In order to run 13A05PLAY on PCs running Windows, the device driver **13xxx.vxd** must be installed. For further information on this device driver, see the *S1D13XXX* 32-Bit Windows Device Drivers Installation Guide, document number X00A-E-003-xx.

The latest version of both the executable and source code is available on the Epson Research and Development website at www.erd.epson.com.

Installation

PC platform

Copy the file **13A05play.exe** to any directory (e.g. c:\s1d13a05).

Embedded platform

Download the program 13A05play to the system.

Usage

PC platform

At the prompt, type:

13A05play [/?]

Where:

/? displays copyright and program version information.

Embedded platform

Execute **13A05play** and enter commands at the prompt. The "/?" command provides copyright and program version information.

Commands

The following commands are intended for use at 13A05PLAY command prompt. However, simple commands can also be executed from the command line (e.g. 13A05play f 0 14000 AB q).

CLKI freq

Sets the frequency of CLKI.

Where:

freq The desired frequency for CLKI (in MHz).

CLKI2 freq

Sets the frequency of CLKI2.

Where:

freq The desired frequency for CLKI2 (in MHz).

D[8|16|32] [startaddr [endaddr|len]]

Displays a memory dump from the specified display buffer address range.

Where:

8|16|32 The unit size: 8-bit (bytes), 16-bit (words), 32-bit (dwords).

If a unit size is not specified, this command uses the unit size from the last Dump command performed. If no previous Dump command has been issued, the unit size defaults to

8-bit.

startaddr The starting address to read data from. Specifying a

period (.) uses the same starting address as the last Dump command performed. Specifying a startaddr of two periods

(..) will back the start address by the size of *len*.

endaddr|len Determines how many units to continue dumping the

contents of the display buffer. A number without a prefix represents a physical ending address. If an "L" prefix is used, the number that follows represents *len*, which is the number of bytes/words/dwords to be dumped. *Len* is based on the unit size. For example, 'L8' when the unit size is 16-bit would cause the Dump command to dump 8 words

from the starting address.

13A05PLAY Diagnostic Utility Issue Date: 02/01/17

F[8|16|32] startaddr endaddr|len data1 [data2 data3 ...]

Fills a specified address range in the display buffer with the given data.

Where:

8|16|32 The unit size: 8-bit (bytes), 16-bit (words), 32-bit (dwords).

If a unit size is not specified, this command uses the unit size from the last Fill command performed. If no previous Fill command has been issued, the unit size defaults to 8-bit.

startaddr The starting address to begin filling at. Specifying a

period (.) uses the same starting address as the last Fill

command performed.

endaddr|len Determines how many units to fill the display buffer with. A

number without a prefix represents a physical ending address. If a "L" prefix is used, the number that follows represents *len*, or the number of bytes/words/dwords to be filled. *Len* is based on the unit size. For example, 'L8' when the unit size is 16-bit would cause the Fill command to fill 8

words from the starting address.

data1 data2 ... The value(s) used to fill the display buffer. If multiple

values are given, the pattern repeats through memory. Values can be combinations of 'text' or numbers. Numbers are assumed to be hexadecimal values unless otherwise specified with the correct suffix (binary = i, octal = o, decimal = t, hexadecimal = h). For example, 101i = 101 binary. To specify text values, enclose text data inside

quotes.

H [lines]

Sets the number of lines of data that are displayed at a time. The display is halted after the specified number of lines. Setting the number of lines to 0 disables the halt function and allows the data to continue displaying until all data has been shown.

This command is useful when large blocks of the display buffer or the contents of the LUT are being viewed.

Where:

lines Number of lines that are shown before halting the

displayed data (decimal value).

I

Initializes the S1D13A05 registers with the default register settings as configured by the utility 13A05CFG. To initialize the S1D13A05 with different register values, reconfigure 13A05PLAY using 13A05CFG. For further information on 13A05CFG, see the 13A05CFG User Manual, document number X40A-B-001-xx.

Note

13A05PLAY must be configured using 13A05CFG before using the "I" command. If the "I" command is used before 13A05PLAY is configured, an error message is displayed and no further action is taken.

L index [red green blue]

Reads/writes the red, green, and blue Look-Up Table (LUT) components. If the red, green, and blue components are not specified, the LUT for the given index is read and the RGB values are displayed.

Where:

index Index into the LUT (hex).

red Red component of the LUT (hex).
green Green component of the LUT (hex).
blue Blue component of the LUT (hex).

Note

Only bits 7-2 of each color are used in the LUT. The least significant two bits of the colors are discarded. For example, the command **L 0 1 2 3** will set each RGB component of LUT index 0 to 0, as the values 1, 2, an 3 use only the least significant bits.

LA

Reads and displays all LUT values.

M [bpp]

Sets the color depth (bpp). If no color depth is provided, information about the current settings are displayed.

Where:

bpp Color depth to be set (1/2/4/8/16 bpp).

Note

This command reads and interprets the S1D13A05 control registers. To function correctly the registers must have been initialized using the 'I' command.

N

This option sets the display format for register reads/writes. When the "N" option is selected, register reads/writes are displayed in a simple value format. The "V" option selects a more graphical representation of the register structure and values. The "N" option is the default setting.

O

Quits the program.

R[8|16|32] [addr1 addr2 addr3 ...]

Reads the display buffer at the address locations given.

Where:

8|16|32 The unit size: 8-bit (bytes), 16-bit (words), 32-bit (dwords).

If a unit size is not specified, this command uses the unit size from the last Read command performed. If no previous Read command has been issued, the unit size defaults to

8-bit.

addr The address to read data from. Multiple addresses can be

given.

13A05PLAY Diagnostic Utility Issue Date: 02/01/17

Run scriptfile

This command opens the file scriptfile and executes each line as if it were typed from the command prompt. For more information on script files, see **Section**, "Script Files" on page 12.

Where:

scriptfile A file containing 13A05PLAY commands

S[8|16|32] startaddr endaddr|len data1 [data2 data3 data4 ...]

Search the display buffer for the given data.

Where:

8|16|32 The unit size: 8-bit (bytes), 16-bit (words), 32-bit (dwords).

If a unit size is not specified, this command uses the unit size from the last Search command performed. If no previous Search command has been issued, the unit size defaults to

8-bit.

startaddr The starting address to begin the search from. Specifying a

period (.) uses the same starting address as the last Search

command performed.

endaddr|len Determines how many units of the display buffer will be

searched through. A number without a prefix represents a physical ending address. If a "L" prefix is used, the number

that follows represents len, or the number of

bytes/words/dwords to be searched through. *Len* is based on the unit size. For example, 'L8' when the unit size is 16-bit would cause the Search command to search 8 words from

the starting address.

data The value(s) to search the display buffer for. Values can be

combinations of 'text' or numbers. Numbers are assumed to be hexadecimal values unless otherwise specified with the correct suffix (binary = i, octal = o, decimal = t, hexadecimal = h). For example, 101i = 101 binary. To specify text data, enclose the search string inside

quotes.

Show

Shows a test pattern on the display. The test pattern is based on current register settings and may not display correctly if the registers are not configured properly.

Use this command to display an image during testing. After adjusting a register value, use the show command to view the effect on the display.

U index [data]

Reads/writes data to the USB register at index. If no data is specified, the command reads and displays the contents from the USB register at index.

Where:

index Index into the USB registers (hex).

data The value to be written to the register. Numbers are assumed

to be hexadecimal values unless otherwise specified with the correct suffix (binary = i, octal = o, decimal = t,

hexadecimal = h).

For example, 101i = 101 binary.

UA

Reads and displays the contents of all the USB registers.

UX index [data]

This command automates the writes/reads into the indexed USB registers located at REG[4038h] and REG[403Ah]. Index represents the value that would be written into REG[4038h] if separate operations were done to access the index and data registers. If no data is specified, the command reads and displays the contents of the specified extended USB register.

Where:

index Index into USB registers at REG[403Ah] (hex).
data The value to be written to the indexed data register.

Numbers are assumed to be hexadecimal values unless otherwise specified with the correct suffix (binary = i,

octal = o, decimal = t, hexadecimal = h).

For example, 101i = 101 binary.

V

This option sets the display format for register reads/writes. When the "V" option is selected, register reads/writes are displayed using a graphical representation of the register structure and values. The "N" option selects a simple value format.

W[8|16|32] [startaddr [data1 data2 data3 data4 ...]]

Writes the given data sequence to the display buffer starting at startaddr location.

Where:

8|16|32 The unit size: 8-bit (bytes), 16-bit (words), 32-bit (dwords).

If a unit size is not specified, this command uses the unit size from the last Write command performed. If no previous Write command has been issued, the unit size defaults to

8-bit.

startaddr The starting address to write data to. Specifying a

period (.) uses the same starting address as the last Write

command performed.

data Values to write to the display buffer. If no data is given, then

this function enters MODIFY mode. This mode prompts the user with the address and it's current data. While in this

mode, the user can type any of the following.

- new values (in hex)

- ENTER or SPACE - moves to the next memory location (if data is specified the previous memory location is updated, if no data is specified no change is made)

- "-" - moves to the previous memory location

- "Q" or "." - exits MODIFY mode

X[8|16|32] [index [data]]

Reads/writes data to the register at index. If no data is specified, the register is read and the contents are displayed.

Where:

8|16|32 The unit size: 8-bit (bytes), 16-bit (words), 32-bit (dwords).

If a unit size is not specified, this command uses the unit size from the last X command performed. If no previous X command has been issued, the unit size defaults to 8-bit.

index Index into the registers (hex).

data The value to be written to the register. Numbers are

assumed to be hexadecimal values unless otherwise specified with the correct suffix (binary = i, octal = o,

decimal = t, hexadecimal = h). For example, 101i = 101 binary.

XA

Reads and displays the contents of all the S1D13A05 registers.

?

Displays the help screen. The help screen contains a summary of all available commands.

13A05PLAY Example

- 1. Configure **13A05PLAY** using the utility **13A05CFG**. For further information on 13A05CFG, see the *13A05CFG User Manual*, document number X40A-B-001-xx.
- 2. Type **13A05PLAY** to start the program.
- 3. Type ? for help.
- 4. Type **i** to initialize the registers.
- 5. Type **xa** to display the contents of the registers.
- 6. Type **x 80** to read register 80h.
- 7. Type **x 80 10** to write 10h to register 80h.
- 8. Type **f 0 ffff aa** to fill the first 10000h bytes of the display buffer with AAh.
- 9. Type **d 0 ff** to read the first 100h bytes of the display buffer.
- 10. Type **show** to display a test pattern.
- 11. Type **m** to display current mode information.
- 12. Type **m 2** to set the color depth to 2 bpp.
- 13. Type **show** to display a test pattern.
- 14. Type **q** to exit the program.

Script Files

13A05PLAY can be controlled by a script file. This is useful when:

- there is no display to monitor command keystroke accuracy.
- various registers must be quickly changed to view results.

A script file is an ASCII text file with one 13A05PLAY command per line. Script files can be executed from within 13A05PLAY using the Run command (e.g. = run dumpregs.scr). Alternately, the script file can be executed from the OS command prompt. On a PC platform, a typical script command line might be:

13A05PLAY run dumpregs.scr > results

This causes the file **dumpregs.scr** to be interpreted as commands by 13A05PLAY and the results to be redirected to the file **results**.

Example 1: Create a script file that reads all registers.

; This file initializes the S1D13A05 and reads the registers.

; Note: after a semicolon (;), all characters on a line are ignored.

; Initialize the S1D13A05

i

; Read all registers

xa

S1D13A05 LCD/USB Companion Chip

13A05VIEW Demonstration Program

Document Number: X40A-B-003-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

13A05VIEW

13A05VIEW is a demonstration utility used to show the S1D13A05 display capabilities by rendering bitmap images on the display device. The program supports files in . bmp, .gif, and .jpg format. 13A05VIEW supports SwivelViewTM (90°, 180°, and 270° hardware rotation of the display image is supported by pre-configuring 13A05VIEW for the correct SwivelView mode using 13A05CFG).

The 13A05VIEW demonstration utility must be configured to work with your hardware configuration. The program 13A05CFG can be used to configure 13A05VIEW. For further information on 13A05CFG, refer to the *13A05CFG Users Manual*, document number X40A-B-001-xx.

This user manual is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

S1D13A05 Supported Evaluation Platforms

13A05VIEW is available as an executable for PCs running Windows® 9x/ME/NT/2000/XP and as C source code which can be modified and recompiled to allow 13A05VIEW to run on other evaluation platforms.

The latest version of both the executable and source code is available on the Epson Research and Development website at www.erd.epson.com.

Installation

Copy the file **13A05view.exe** to any directory (e.g. c:\s1d13a05).

Usage

At the prompt, type:

13A05view imagefile [/A[time]] [/noinit] [/?]

Where:

imagefile Specifies the filename of the image file (.bmp, .gif, .jpg) to

be displayed.

/A[time] Automatically displays the image for the specified *time*. If

no time is specified then a default time of 5 seconds is used.

/noinit Bypasses register initialization of the S1D13A05 chip

/? Displays the help message.

13A05VIEW Examples

To display a .bmp image in the main window of the LCD, type the following: **13A05view imagefile.bmp**

To display a .gif image in the main window of the LCD for 10 seconds, type the following: **13A05view imagefile.gif /A10**

To display a .jpg image in the main window of the LCD and skip register initialization, type the following:

13A05view imagefile.jpg /noinit

Note

13A05VIEW does not directly support the S1D13A05 SwivelView feature. To display an image file using SwivelView, configure **13a05view.exe** for the selected SwivelView mode (90°, 180°, 270°) using the configuration program 13A05CFG. For further information on 13A05CFG, see the *13A05CFG User Manual*, document number X40A-B-001-xx.

Comments

- If an image smaller than the physical panel size is displayed it will appear centered on the display.
- If an image larger than the physical panel size (but small enough to fit in display memory) is loaded, a virtual display is created. This allows the user to see the entire image using panning and scrolling. To navigate around the image use the following keys.
 - Scroll Up "8"
 - Scroll Down "2"
 - Pan Left "4"
 - Pan Right "6"
- If an image larger than the physical panel size which cannot fit entirely in display memory is loaded, the image is cropped to the physical panel size.
- 24-bit true color bitmaps are displayed at a color depth of 16 bit-per-pixel.
- Only the green component of the image is seen on a monochrome panel.

THIS PAGE LEFT BLANK

S1D13A05 LCD/USB Companion Chip

Windows® CE 3.x Display Driver

Document Number: X40A-E-002-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

WINDOWS® CE 3.0 DISPLAY DRIVER

Windows CE v3.0 display driver for the S1D13A05 LCD/USB Companion Chip is intended as "reference" source code for OEMs developing for the Microsoft Window CE platform. The driver supports 4, 8 and 16 bit-per-pixel color depths in landscape mode (no rotation), and 8 and 16 bit-per-pixel color depths in SwivelViewTM 90 degree, 180 degree and 270 degree modes. The source code is written for portability and contains functionality for most features of the S1D13A05. Source code modification is required to provide a smaller driver for mass production.

The Windows CE v3.0 display driver is designed around a common configuration include file called **mode0.h**, which is generated by the configuration utility 13A05CFG. This design allows for easy customization of display type, clocks, decode addresses, rotation, etc. by OEMs. For further information on 13A05CFG, see the *13A05CFG Configuration Program User Manual*, document number X40A-B-001-xx.

Note

The Windows CE display driver is provided as "reference" source code only. They are intended to provide a basis for OEMs to develop their own drivers for Microsoft Windows CE v3.0.

This document and the source code for the Windows CE v3.0 driver is updated as appropriate. Before beginning any development, please check the Epson Research and Development Website at www.erd.epson.com for the latest revisions.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

Example Driver Builds

The following section describes how to build the Windows CE display driver for Windows CE Platform Builder 3.00 using the GUI interface.

Build for CEPC (X86) on Windows CE Platform Builder 3.00 using the GUI Interface

- 1. Install Microsoft Windows 2000 Professional, or Windows NT Workstation version 4.0 with Service Pack 5 or later.
- 2. Install Platform Builder 3.00.
- 3. Start Platform Builder by double-clicking on the Microsoft Windows CE Platform Builder icon.
- 4. Create a new project.
 - a. Select File | New.
 - b. In the dialog box, select the Platforms tab.
 - c. In the platforms dialog box, select "WCE Platform", set a location for the project (such as x:\myproject), set the platform name (such as myplatform), and set the processor to "Win32 (WCE x86)".
 - d. Click the OK button.
 - e. In the dialog box "WCE Platform Step 1 of 2", select CEPC.
 - f. Click the Next button.
 - g. In the dialog box "WCE Platform Step 2 of 2", select Maximum OS (Maxall).
 - h. Click the Finish button.
 - i. In the dialog box "New Platform Information", click the OK button.
- 5. Set the active configuration to "Win32 (WCE x86) Release".
 - a. From the Build menu, select "Set Active Configuration".
 - b. Select "MYPLATFORM Win32 (WCE x86) Release".
 - c. Click the OK button.

- 6. Add the environment variable DDI_S1D13A05.
 - a. From the Platform menu, select "Settings".
 - b. Select the "Environment" tab.
 - c. In the Variable box, type "DDI_S1D13A05".
 - d. In the Value box, type "1".
 - e. Click the Set button.
 - f. Click the OK button.
- 7. Create a new directory S1D13A05, under x:\wince300\platform\cepc\drivers\display, and copy the S1D13A05 driver source code into this new directory.
- 8. Add the S1D13A05 driver component.
 - a. From the Platform menu, select "Insert | User Component".
 - b. Set "Files of type:" to "All Files (*.*)".
 - c. Select the file x:\wince300\platform\cepc\drivers\display\s1d13a05\sources.
 - d. Click the OK button.
 - e. In the "User Component Target File" dialog box, select browse and then select the path and the file name of "sources" as in step c.
 - f. Click the OK button.
- 9. Delete the component "ddi_flat".
 - a. In the Platform window, select the ComponentView tab.
 - b. Show the tree for MYPLATFORM components by clicking on the '+' sign at the root of the tree.
 - c. Right-click on the ddi_flat component.
 - d. Select "Delete".
 - e. From the File menu, select "Save Workspace".

- 10. From the Platform window, click the ParameterView Tab. Show the tree for MY-PLATFORM Parameters by clicking the '+' sign at the root of the tree. Expand the WINCE300 tree and then click on "Hardware Specific Files" and then double click "PLATFORM.BIB". Edit the file **platform.bib** and make the following two changes:
 - a. Insert the following text after the line "IF ODO_NODISPLAY!":

```
IF DDI_S1D13A05
```

ddi.dll \$(_FLATRELEASEDIR)\S1D13A05.dll NK SH

ENDIF

ENDIF

ENDIF

b. Find the section shown below, and insert the lines as marked:

```
IF CEPC_DDI_FLAT!

IF DDI_S1D13A05! ;Insert this line

IF CEPC_DDI_S3VIRGE!

IF CEPC_DDI_CT655X!

IF CEPC_DDI_VGA8BPP!

IF CEPC_DDI_S3TRIO64!

IF CEPC_DDI_ATI!

ddi.dll $(_FLATRELEASEDIR)\ddi_flat.dll NK SH

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF
```

:Insert this line

11. Modify mode0.h.

The file **mode0.h** (located in **x:\wince300\platform\cepc\drivers\display\s1d13a05**) contains the register values required to set the screen resolution, color depth (bpp), display type, display rotation, etc.

Before building the display driver, refer to the descriptions in the file **mode0.h** for the default settings of the console driver. If the default does not match the configuration you are building for then **mode0.h** will have to be regenerated with the correct information.

Use the program 13A05CFG to generate the header file. For information on how to use 13A05CFG, refer to the *13A05CFG Configuration Program User Manual*, document number X40A-B-001-xx

After selecting the desired configuration, choose "File->Export" and select the "C Header File for S1D13A05 WinCE Driver" option. Save the new configuration as **mode0.h** to replace the original configuration file in the directory \wince300\platform\cepc\drivers\display.

12. From the Platform window, click the ParameterView Tab. Show the tree for MY-PLATFORM Parameters by clicking the '+' sign at the root of the tree. Expand the WINCE300 tree and click on "Hardware Specific Files", then double click "PLATFORM.REG". Edit the file **platform.reg** to match the screen resolution, color depth, and rotation information in **mode0.h**.

For example, the display driver section of platform.reg should be as follows when using a 320x240 LCD panel with a color depth of 8 bpp and a SwivelView mode of 0° (landscape):

```
; Default for EPSON Display Driver
```

; 320x240 at 8 bits/pixel, LCD display, no rotation

; Useful Hex Values

: 640=0x280 480=0x1E0 320=140 240=0xF0

[HKEY_LOCAL_MACHINE\Drivers\Display\S1D13A05]

"Width"=dword:140

"Height"=dword:F0

"Bpp"=dword:8

"Rotation"=dword:0

13. From the Build menu, select "Rebuild Platform" to generate a Windows CE image file (**nk.bin**) in the project directory x:\myproject\myplatform\reldir\x86_release\nk.bin.

Installation for CEPC Environment

Once the **nk.bin** file is built, the CEPC environment can be started by booting either from a floppy or hard drive configured with a Windows 9x operating system. The two methods are described below.

- 1. To start CEPC from a floppy drive:
 - a. Create a bootable floppy disk.
 - b. Copy **himem.sys** to the floppy disk and edit **config.sys** on the floppy disk to contain only the following line:

device=a:\himem.sys

c. Edit autoexec.bat on the floppy disk to contain the following lines:

loadcepc /B:38400 /C:1 c:\nk.bin

- d. Search for **loadcepc.exe** in the Windows CE directories and copy **loadcepc.exe** to the bootable floppy disk.
- e. Copy **nk.bin** to c:\.
- f. Boot the system from the bootable floppy disk.
- 2. To start CEPC from a hard drive:
 - Search for loadcepc.exe in the Windows CE directories and copy loadcepc.exe to C:\.
 - b. Edit **config.sys** on the hard drive to contain only the following line:

device=c:\himem.sys

c. Edit **autoexec.bat** on the hard drive to contain the following lines:

loadcepc/B:38400/C:1 c:\nk.bin

- d. Copy **nk.bin** to c:\.
- e. Boot the system.
- 3. To start CEPC using Eboot:

Eboot is one of three boot loader models used by Platform Builder v3.0 to load a Windows CE image onto a target machine. The Eboot method uses an ethernet network card to move the image from the host computer to the target computer.

The Microsoft supplied version of Eboot does not function correctly with several Epson evaluation boards. These evaluation boards set the PCI class identifier field to "undefined PCI device". The Microsoft Eboot loader does not allow undefined PCI classes and the boot process halts. The Epson supplied version of eboot.bin fixes the "undefined PCI class" limitation. The following describes the steps required to use the Epson supplied eboot.bin with the Microsoft Eboot loader. Please refer to Platform Builder and MSDN documentation for more information regarding the use of Eboot.

In this example, *host machine* refers to the computer on which Platform Builder has been installed and where the **nk.bin** image is located. *Target machine* refers to the computer on which the Windows CE image is to be run. It is assumed that before attempting to eboot the target machine the Windows CE image will be built and ready on the host machine.

a. Create a bootable floppy disk.

The following files must be present on the disk:

himem.sys (found on your CE development platform) **loadcepc.exe** (found on your CE development platform)

eboot.bin(supplied by Epson)config.sys(supplied by Epson)autoexec.bat(supplied by Epson)

Note: The **config.sys** and **autoexec.bat** files are configured to allow loading of a local copy of the **nk.bin** image also.

b. Modify autoexec.bat

It may be necessary to modify the network card settings in **autoexec.bat**. Locate the lines containing "set NET_IRQ" and "set NET_IOBASE" and ensure the values match the settings of your network card. If necessary, change the values to reflect the settings on your card (typically IRQ: 5 and IOBASE: 340).

- c. Boot the target CEPC machine using the floppy disk and choose the eboot option.
- d. Configure remote services on the host machine. This must be done only once.
 - *i*. On the host machine, open the project workspace in Platform Builder. From the Platform Builder menu select "Target", and then select "Configure Remote Services".
 - ii. Under the Services tab, set the top two drop down boxes to "Ethernet".
 - *iii*. Under the Ethernet tab, a CEPC machine should appear in the New Devices box. Select the CEPC machine and click on the arrow button to the right of it.
- e. Normal Eboot Operation
 - a. On the host machine, open the project workspace in Platform Builder then select the menu option "Target", and then select "Configure Remote Services".
 - b. Select the Ethernet tab and ensure that "Current Device:" is the intended target machine. If not, select the machine from the list or configure a new remote service (see step d)
 - c. Select the menu option "Target", and select "Download Image". The download may take a few minutes.

Note: Problems with steps d or e may be due to incorrect synchronization between the host and target machines. Try re-booting the target machine from the floppy and repeating the step.

Configuration

There are several issues to consider when configuring the display driver. The issues cover debugging support, register initialization values and memory allocation. Each of these issues is discussed in the following sections.

Compile Switches

There are several switches, specific to the S1D13A05 display driver, which affect the display driver.

The switches are added or removed from the compile switches in the file **sources**.

WINCEVER

This option is automatically set to the numerical version of WinCE for version 2.12 or later. If the environment variable, _WINCEOSVER is not defined, then WINCEVER will default to 2.11. The S1D13A05 display driver may test against this option to support different WinCE version-specific features.

EnablePreferVmem

This option enables the use of off-screen video memory. When this option is enabled, WinCE can optimize some BLT operations by using off-screen video memory to store images. You may need to disable this option if your off-screen video memory is limited.

ENABLE_CLOCK_CHIP

This option is used to enable support for the ICD2061A clock generator. This clock chip is used on the S1D13A05 evaluation board. The S1D13A05 display drivers can program the clock chip to support the frequencies required in the MODE tables.

If you are not using the S1D13A05 evaluation board, you should disable this option.

EpsonMessages

This debugging option enables the display of EPSON-specific debug messages. These debug message are sent to the serial debugging port. This option should be disabled unless you are debugging the display driver, as they will significantly impact the performance of the display driver.

DEBUG_MONITOR

This option enables the use of the debug monitor. The debug monitor can be invoked when the display driver is first loaded and can be used to view registers, and perform a few debugging tasks. The debug monitor is still under development and is **UNTESTED**.

This option should remain disabled unless you are performing specific debugging tasks that require the debug monitor.

MonoPanel

This option is intended for the support of monochrome panels only.

The option causes palette colors to be grayscaled for correct display on a mono panel. For use with color panels this option should not be enabled.

DEBUG_BLT

This option enables special BLT debugging messages on the debugging serial port. This option, when enabled, will drastically impact display driver performance, and should only be used to track down failures in the BLT operations.

This option should be disabled unless doing BLT debugging.

Mode File

A second variable which will affect the finished display driver is the register configurations contained in the mode file.

The MODE tables (contained in files **mode0.h**, **mode1.h**, **mode2.h**...) contain register information to control the desired display mode. The MODE tables must be generated by the configuration program **13a05cfg.exe**. The display driver comes with one example MODE table:

• MODE0.H - LCD 8-bit STN color, 320x240, 8bpp, 70Hz

By default, only **mode0.h** is used by the display driver. New mode tables can be created using the 13A05CFG program. Edit the #include section of **mode0.h** to add the new mode table.

If you only support a single mode table, you do not need to add any information to the WinCE registry. If, however, you support more that one display mode, you should create registry values (see below) that will establish the initial display mode. If your display driver contains multiple mode tables, and if you do not add any registry values, the display driver will default to the first mode table in your list.

To select which display mode the display driver should use upon boot, add the following lines to your **platform.reg** file:

[HKEY_LOCAL_MACHINE\Drivers\Display\S1D13A05]

"Width"=dword:140

"Height"=dword:F0

"Bpp"=dword:8

"Rotation"=dword:0

Note that all dword values are in hexadecimal, therefore 140h = 320 and F0h = 240. When the display driver starts, it will read these values in the registry and attempt to match a mode table against them. All values must be present and valid for a match to occur, otherwise the display driver will default to the first mode table in your list.

A WinCE desktop application (or control panel applet) can change these registry values, and the display driver will select a different mode upon warmboot. This allows the display driver to support different display configurations and/or orientations. An example application that controls these registry values will be made available upon the next release of the display driver; preliminary alpha code is available by special request.

Resource Management Issues

The Windows CE 3.0 OEM must deal with certain display driver issues relevant to Windows CE 3.0. These issues require the OEM balance factors such as: system vs. display memory utilization, video performance, and power off capabilities.

The section "Simple Display Driver Configuration" on page 14 provides a configuration which should work with most Windows CE platforms. This section is only intended as a means of getting started. Once the developer has a functional system, it is recommended to optimize the display driver configuration as described below in "Description of Windows CE Display Driver Issues".

Description of Windows CE Display Driver Issues

The following are some issues to consider when configuring the display driver to work with Windows CE:

1. When Windows CE enters the Suspend state (power-off), the LCD controller and display memory may lose power, depending on how the OEM sets up the system. If display memory loses power, all images stored in display memory are lost.

If power-off/power-on features are required, the OEM has several options:

- If display memory power is turned off, add code to the display driver to save any images in display memory to system memory before power-off, and add code to restore these images after power-on.
- If display memory power is turned off, instruct Windows CE to redraw all images upon power-on. Unfortunately it is not possible to instruct Windows CE to redraw any off-screen images, such as icons, slider bars, etc., so in this case the OEM must also configure the display driver to never use off-screen memory.
- Ensure that display memory never loses power.

2. Using off-screen display memory significantly improves display performance. For example, slider bars appear more smooth when using off-screen memory. To enable or disable the use of off-screen memory, edit the file x:\wince300\platform\cepc\drivers\display\S1D13A05\sources. In the file sources, there is a line which, when uncommented, will instruct Windows CE to use off-screen display memory (if sufficient display memory is available):

CDEFINES=\$(CDEFINES) -DEnablePreferVmem

- 3. In the file **project.reg** under CE 3.0, there is a key called PORepaint (search the Windows CE directories for **project.reg**). PORepaint is relevant when the Suspend state is entered or exited. PORepaint can be set to 0, 1, or 2 as described below:
 - a. PORepaint=0
 - This mode tells Windows CE not to save or restore display memory on suspend or resume.
 - Since display data is not saved and not repainted, this is the FASTEST mode.
 - Main display data in display memory must NOT be corrupted or lost on suspend. The memory clock must remain running.
 - Off-screen data in display memory must NOT be corrupted or lost on suspend. The memory clock must remain running.
 - This mode cannot be used if power to the display memory is turned off.

b. PORepaint=1

- This is the default mode for Windows CE.
- This mode tells Windows CE to save the main display data to the system memory on suspend.
- This mode is used if display memory power is going to be turned off when the system is suspended, and there is enough system memory to save the image.
- Any off-screen data in display memory is LOST when suspended. Therefore
 off-screen memory usage must either be disabled in the display driver (i.e:
 EnablePreferVmem not defined in the file sources), or new OEM-specific
 code must be added to the display driver to save off-screen data to system
 memory when the system is suspended, and restored when resumed.
- If off-screen data is used (provided that the OEM has provided code to save off-screen data when the system suspends), additional code must be added to the display driver's surface allocation routine to prevent the display driver from allocating the "main memory save region" in display memory. When WinCE OS attempts to allocate a buffer to save the main display data, WinCE OS marks the allocation request as preferring display memory. We believe this is incorrect. Code must be added to prevent this specific allocation from being allocated in display memory it MUST be allocated from system memory.
- Since the main display data is copied to system memory on suspend, and then simply copied back on resume, this mode is FAST, but not as fast as mode 0.

c. PORepaint=2

- This mode tells WinCE to not save the main display data on suspend, and causes WinCE to REPAINT the main display on resume.
- This mode is used if display memory power is going to be turned off when the system is suspended, and there is not enough system memory to save the image.
- Any off-screen data in display memory is LOST, and since there is insufficient system memory to save display data, off-screen memory usage MUST be disabled.
- When the system is resumed, WinCE instructs all running applications to repaint themselves. This is the SLOWEST of the three modes.

Simple Display Driver Configuration

The following display driver configuration should work with most platforms running Windows CE. This configuration disables the use of off-screen display memory and forces the system to redraw the main display upon power-on.

This step disables the use of off-screen display memory.
 Edit the file x:\wince300\platform\cepc\drivers\display\S1D13A05\sources and change the line

CDEFINES=\$(CDEFINES) -DEnablePreferVmem

to

#CDEFINES=\$(CDEFINES) -DEnablePreferVmem

2. This step causes the system to redraw the main display upon power-on. This step is only required if display memory loses power when Windows CE is shut down. If display memory is kept powered up (set the S1D13A05 in powersave mode), then the display data will be maintained and this step can be skipped.

Search for the file **project.reg** in your Windows CE directories, and inside **project.reg** find the key PORepaint. Change PORepaint as follows:

"PORepaint"=dword:2

Comments

- The display driver is CPU independent, allowing use of the driver code for several Windows CE Platform Builder supported platforms. The file **s1dflat.cpp** will require editing for the correct values of PhysicalPortAddr, PhysicalVmemAddr, etc.
- The sample code defaults to a 320x240 8-bit color passive LCD panel in SwivelView 0° mode (landscape) with a color depth of 8 bpp. To support other settings, use **13a05cfg.exe** to generate a proper **mode0.h** file. For further information, refer to the *13A05CFG Configuration Program User Manual*, document number X40A-B-001-xx.
- By default, the 13A05CFG program assumes PCI addressing for the S1D13A05 evaluation board. This means that the display driver will automatically locate the S1D13A05 by scanning the PCI bus (currently only supported for the CEPC platform). If you select the address option "Other" and fill in your own custom addresses for the registers and video memory, then the display driver will not scan the PCI bus and will use the specific addresses you have chosen.
- If you are running the display driver on hardware other than the S1D13A05 evaluation board, you must ensure that your hardware provides the correct clock frequencies for CLKI and CLKI2. 13A05CFG defaults to 50MHz for both CLKI and CLKI2.

On the evaluation board, the display driver will correctly program the clock chip to support the CLKI and CLKI2 frequencies. On customer hardware, you must ensure that the clocks you provide to all clock inputs match the settings you chose in the Clocks tab of the 13A05CFG program. For more information on setting the clocks, see the 13A05CFG Configuration Program User Manual, document number X40A-B-001-xx.

If you run the S1D13A05 with a single clock source, make sure your clock sources for PCLK, BCLK, and MCLK are correctly set to use the correct clock input source. Also ensure that you enable the clock dividers as required for different display hardware.

- If you are using 13a05cfg.exe to produce multiple MODE tables, make sure you change the Mode Number setting for each mode table you generate. The display driver supports multiple mode tables, but only if each mode table has a unique mode number. For more information on setting the mode number, see the 13A05CFG Configuration Program User Manual, document number X40A-B-001-xx.
- 13A05CFG assumes you are using the S1D13A05 evaluation board, and defaults the Panel Power control to GPIO0. 13A05CFG allows you to change the GPIO pin used to control panel power, or to disable the use of GPIO pins altogether. If this is changed from the default, your driver will no longer be able to control panel power on the S1D13A05 evaluation board, and your panel may not be powered up correctly.
- At this time, the driver has been tested on the x86 CPUs and have been run with Platform Builder v3.00.

THIS PAGE LEFT BLANK

S1D13A05 LCD/USB Companion Chip

Wind River WindML v2.0 Display Drivers

Document Number: X40A-E-003-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Wind River WindML v2.0 DISPLAY DRIVERS

The Wind River WindML v2.0 display drivers for the S1D13A05 LCD/USB Companion Chip are intended as "reference" source code for OEMs developing for Wind River's WindML v2.0. The driver package provides support for both 8 and 16 bit-per-pixel color depths. The source code is written for portability and contains functionality for most features of the S1D13A05. Source code modification is required to produces a smaller, more efficient driver for mass production.

The WindML display drivers are designed around a common configuration include file called **mode0.h** which is generated by the configuration utility 13A05CFG. This design allows for easy customization of display type, clocks, decode addresses, rotation, etc. by OEMs. For further information on 13A05CFG, see the *13A05CFG Configuration Program User Manual*, document number X40A-B-001-xx.

Note

The WindML display drivers are provided as "reference" source code only. They are intended to provide a basis for OEMs to develop their own drivers for WindML v2.0. These drivers are not backwards compatible with UGL v1.2. For information on UGL v1.2 display drivers, contact us via email at erdvdcsw_info@erd.epson.com.

This document and the source code for the WindML display drivers is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revisions before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

Building a WindML v2.0 Display Driver

The following instructions produce a bootable disk that automatically starts the UGL demo program. These instructions assume that Wind River's Tornado platform is already installed.

Note

For the example steps where the drive letter is given as "x:". Substitute "x" with the drive letter that your development environment is on.

1. Create a working directory and unzip the WindML display driver into it.

From a command prompt or GUI interface create a new directory (e.g. x:\13a05).

Unzip the file **13a05windml.zip** to the newly created working directory. The files will be unzipped to the directories **x**:**13a05\8bpp** and **x**:**13a05\16bpp**.

2. Configure for the target execution model.

This example build creates a VxWorks image that fits onto and boots from a single floppy diskette. In order for the VxWorks image to fit on the disk certain modifications are required.

Replace the file x:\tornado\target\config\pcpentium\config.h with the file x:\13a05\8bpp\file\config.h (or x:\13a05\16bpp\file\config.h). The new config.h file removes the networking components and configures the build image to boot from a floppy disk.

Note

Rather than simply replacing the original **config.h** file, rename it so the file can be stored for reference purposes.

3. Build a boot ROM image.

From the Tornado tool bar, select Build -> Build Boot ROM. Select "pcPentium" as the BSP and "bootrom_uncmp" as the image.

4. Create a bootable disk (in drive A:).

From a command prompt change to the directory **x:\tornado\host\x86-win32\bin** and run the batch file **torvars.bat**. Next, change to the directory **x:\tornado\target\config\pcPentium** and type:

mkboot a: bootrom_uncmp

5. If necessary, generate a new **mode0.h** configuration file.

The file **mode0.h** contains the register values required to set the screen resolution, color depth (bpp), display type, rotation, etc. The **mode0.h** file included with the drivers, may not contain applicable values and must be regenerated using the configuration program 13A05CFG. If building for 8 bpp, place the new **mode0.h** file in the directory **x:\13a05\8bpp\file**. If building for 16 bpp, place the new **mode0.h** file in **x:\13a05\16bpp\file**.

For more information on 13A05CFG, see the *13A05CFG Configuration Program User Manual*, document number X37A-B-001-xx available at www.erd.epson.com.

6. Build the WindML v2.0 library.

From a command prompt change to the directory **x:\tornado\host\x86-win32\bin** and run the batch file **torvars.bat**. Next, change to the directory **x:\tornado\tar-get\src\ugl</u> and type the command:**

make CPU=PENTIUM ugl

7. Open the S1D13A05 workspace.

From the Tornado tool bar, select File->Open Workspace...->Existing->Browse... and select the file x:\13a05\8bpp\13A05.wsp (or x:\13a05\16bpp\13a05.wsp).

8. Add support for single line comments.

The WindML v2.0 display driver source code uses single line comment notation, "//", rather than the ANSI conventional comments, "/*...*/".

To add support for single line comments follow these steps:

- a. In the Tornado "Workspace Views" window, click on the "Builds" tab.
- b. Expand the "8bpp Builds" (or "16bpp Builds") view by clicking on the "+" next to it. The expanded view will contain the item "default". Right-click on "default" and select "Properties...". A "Properties:" window will appear.
- c. Select the "C/C++ compiler" tab to display the command switches used in the build. Remove the "-ansi" switch from the line that contains "-g -mpentium -ansi -nostdinc -DRW_MULTI_THREAD".
 (Refer to GNU ToolKit user's guide for details)

9. Compile the VxWorks image.

Select the "Builds" tab in the Tornado "Workspace Views" window.

Right-click on "8bpp files" (or "16bpp files") and select "Dependencies...". Click on "OK" to regenerate project file dependencies for "All Project files".

Right-click on "8bpp files" (or "16bpp files") and select "ReBuild All(vxWorks)" to build VxWorks.

10. Copy the VxWorks file to the diskette.

From a command prompt or through the Windows interface, copy the file x:\13a05\8bpp\default\vxworks (or x:\13a05\16bpp\default\vxworks) to the bootable disk created in step 4.

11. Start the VxWorks demo.

Boot the target PC with the VxWorks bootable diskette to run the UGL demo program automatically.

References

Documents

- Epson Research and Development, Inc., *S1D13A05 Hardware Functional Specification*, Document Number X40A-A-001-xx.
- Epson Research and Development, Inc., *S1D13A05 Programming Notes and Examples*, Document Number X40A-G-003-xx.
- Epson Research and Development, Inc., 13A05CFG Configuration Utility User Manual, Document Number X40A-B-001-xx.

Document Sources

• Epson Research and Development Website: www.erd.epson.com.

Sales and Technical Support

EPSON LCD/USB Companion Chips (S1D13Axx)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan

Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

S1D13A05 LCD/USB Companion Chip

Linux Console Driver

Document Number: X40A-E-004-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation.

THIS PAGE LEFT BLANK

Linux Console Driver

The Linux console driver for the S1D13A05 LCD/USB Companion Chip is intended as "reference" source code for OEMs developing for Linux. It supports color depths of 4, 8, and 16 bit-per-pixel. The source code is written for portability and contains functionality for most features of the S1D13A05. Source code modification is required to provide a smaller driver for mass production.

A Graphical User Interface (GUI) such as Gnome can obtain the frame buffer address from this driver allowing the Linux GUI the ability to update the display.

The console driver is designed around a common configuration include file, called **s1d13a05.h**, which is generated by the configuration utility 13A05CFG. This design allows for easy customization of display type, clocks, decode addresses, rotation, etc. by OEMs. For further information on 13A05CFG, see the *13A05CFG Configuration Program User Manual*, document number X40A-B-001-xx.

Note

The Linux console driver is provided as "reference" source code only. The driver is intended to provide a basis for OEMs to develop their own drivers for Linux.

This document and the source code for the Linux console drivers are updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revisions or before beginning any development.

We appreciate your comments on our documentation. Please contact us via e-mail at documentation@erd.epson.com.

 Linux Console Driver
 \$1D13A05

 Issue Date: 02/01/21
 \$40A-E-004-01

Building the Console Driver for Linux Kernel 2.2.x

The following steps create a copy of the Linux operating system with the S1D13A05 LCD controller as the console display device. These instructions assume that the GNU development environment is installed and the user is familiar with GNU and the Linux operating system.

1. Acquire the Linux kernel source code.

The Linux kernel source code is available from your Linux supplier or on the internet at ftp://ftp.kernel.org.

The S1D13A05 reference driver for Linux kernel 2.2.x was built using Red Hat Linux 6.1, kernel version 2.2.17. For information on building the kernel refer to the readme file at ftp://ftp.linuxberg.com/pub/linux/kernel/README.

Note

Before continuing with modifications for the S1D13A05, you should ensure that you can build and start the Linux operating system.

2. Unzip the console driver files.

Unzip the S1D13A05 archive to a temporary directory (e.g. /tmp). When completed the following files should be located in the temporary directory.

s1d13a05.h config.in fbmem.c fbcon-cfb4.c makefile

3. Copy the console driver files to the build directory.

Copy the following files from the temporary directory to the directory /usr/src/linux/drivers/video.

```
s1d13xxxfb.c
s1d13a05.h
```

Replace the existing source files of the same name in the directory

/usr/src/linux/drivers/video with the following files from the temporary directory.

```
config.in
fbmem.c
fbcon-cfb4.c
makefile
```

Note

If your kernel version is not 2.2.17, or you want greater control of the build process, use a text editor to add the sections dealing with the Epson driver into the corresponding files.

4. Modify **s1d13a05.h**

The file **s1d13a05.h** contains the register values required to set the screen resolution, color depth (bpp), display type, active display (LCD), display rotation, etc.

Before building the console driver, refer to the descriptions in the file **s1d13a05.h** for the default settings of the console driver. If the default does not match the configuration of the target system, then **s1d13a05.h** must be regenerated with the correct information. Use the program 13A05CFG to generate the header file. For information on how to use 13A05CFG, refer to the *13A05CFG Configuration Program User Manual*, document number X40A-B-001-xx, available at www.erd.epson.com

After selecting the desired configuration in 13A05CFG, choose "File->Export" and select the "C Header File for S1D13A05 Generic Drivers" option. Save the new configuration as **s1d13a05.h** in the directory /**usr/src/linux/drivers/video**, replacing the original configuration file.

5. Configure the video options.

From the command prompt in the directory /usr/src/linux run the command: make menuconfig

This command starts a text based interface which allows the selection of build time parameters. From the text interface under "Console drivers", select:

```
"Support for frame buffer devices"
"Epson LCD/CRT controllers support"
"S1D13A05 support"
"Advanced low level driver options"
"xBpp packed pixels support" *
```

If you are using the Epson S1D13A05 evaluation board select:

```
"Epson PCI Bridge adapter support"
```

Once the kernel options are configured, save and exit the configuration utility.

6. Compile and install the kernel.

Build the kernel with the following sequence of commands.

make dep make clean make bzImage /sbin/lilo (if running lilo)

^{*} where x is the color depth being compile for.

7. Boot the Linux operating system.

If you are using lilo (Linux Loader), modify the lilo configuration file as discussed in the kernel build README file. If no errors are reported during the build, from the command prompt run:

lilo

8. Reboot the system.

Note

In order to use the S1D13A05 console driver with X server, the X server must be configured to use the FBDEV device. Instructions for this process are available on the Internet at www.xfree86.org.

S1D13A05

Building the Console Driver for Linux Kernel 2.4.x

The following steps create a copy of the Linux operating system with the S1D13A05 LCD controller as the console display device. These instructions assume that the GNU development environment is installed and the user is familiar with GNU and the Linux operating system.

1. Acquire the Linux kernel source code.

The Linux kernel source code is available from your Linux supplier or on the internet at ftp://ftp.kernel.org.

The S1D13A05 reference driver for Linux kernel 2.4.x or greater was built using Red Hat Linux 6.1, kernel version 2.4.5. For information on building the kernel refer to the readme file at ftp://ftp.linuxberg.com/pub/linux/kernel/README.

Note

Before continuing with modifications for the S1D13A05, you should ensure that you can build and start the Linux operating system.

2. Unzip the console driver files.

Unzip the S1D13A05 archive to a temporary directory (e.g. /tmp). When completed the following files should be located in the temporary directory.

```
config.in
fbmem.c
fbcon-cfb4.c
makefile
```

The following files should be located in a sub-directory called epson within the temporary directory (e.g. /tmp/epson)

```
makefile
s1d13xxxfb.c
s1d13a05.h
```

3. Make the directory /usr/src/linux/drivers/video/epson.

4. Copy the console driver files to the build directory.

Copy the following files from the temporary directory (e.g. /tmp/epson/) to the directory /usr/src/linux/drivers/video/epson.

```
s1d13xxxfb.c
s1d13a05.h
makefile
```

Replace the existing source files of the same name in the directory /usr/src/linux/drivers/video with the following files from the temporary directory (e.g. /tmp/).

config.in fbmem.c fbcon-cfb4.c makefile

Note

If your kernel version is not 2.4.5, or you want greater control of the build process, use a text editor to add the sections dealing with the Epson driver into the corresponding files.

5. Modify **s1d13a05.h**

The file **s1d13a05.h** contains the register values required to set the screen resolution, color depth (bpp), display type, active display (LCD/CRT), display rotation, etc.

Before building the console driver, refer to the descriptions in the file **s1d13a05.h** for the default settings of the console driver. If the default does not match the configuration of the target system, then **s1d13a05.h** must be regenerated with the correct information. Use the program 13A05CFG to generate the header file. For information on how to use 13A05CFG, refer to the *13A05CFG Configuration Program User Manual*, document number X40A-B-001-xx, available at www.erd.epson.com

After selecting the desired configuration in 13A05CFG, choose "File->Export" and select the "C Header File for S1D13A05 Generic Drivers" option. Save the new configuration as **s1d13a05.h** in the directory /**usr/src/linux/drivers/video**, replacing the original configuration file.

6. Configure the video options.

From the command prompt in the directory /usr/src/linux run the command: make menuconfig

This command starts a text based interface which allows the selection of build time parameters. From the options presented select:

```
"Code maturity level" options

"Prompt for development and/or incomplete drivers"

"Console drivers" options

"Frame-buffer support"

"Support for frame buffer devices (EXPERIMENTAL)"

"EPSON LCD/CRT/TV controller support"

"EPSON S1D13A05 Support"

"Advanced low-level driver options"

"xbpp packed pixels support" *
```

If you are using the Epson S1D13A05 evaluation board select:

"Epson PCI Bridge adapter support"

Once the kernel options are configured, save and exit the configuration utility.

7. Compile and install the kernel

```
Build the kernel with the following sequence of commands:
make dep
make clean
make bzImage
```

8. Boot to the Linux operating system

/sbin/lilo (if running lilo)

If you are using lilo (Linux Loader), modify the lilo configuration file as discussed in the kernel build README file. If no errors are reported during the build, from the command prompt run:

lilo

9. Reboot your system.

Note

In order to use the S1D13A05 console driver with X server, the X server must be configured to use the FBDEV device. Instructions for this process are available on the Internet at www.xfree86.org.

Linux Console Driver S1D13A05
Issue Date: 02/01/21 X40A-E-004-01

^{*} where x is the color depth being compiled for.

References

Documents

- Epson Research and Development, Inc., *S1D13A05 Hardware Functional Specification*, Document Number X40A-A-001-xx.
- Epson Research and Development, Inc., *S1D13A05 Programming Notes and Examples*, Document Number X40A-G-003-xx.
- Epson Research and Development, Inc., 13A05CFG Configuration Utility User Manual, Document Number X40A-B-001-xx.

Document Sources

• Epson Research and Development Website: www.erd.epson.com.

Sales and Technical Support

EPSON LCD/USB Companion Chips (S1D13Axx)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

Linux Console Driver Issue Date: 02/01/21 THIS PAGE LEFT BLANK

S1D13A05 LCD/USB Companion Chip

Windows® CE 3.x USB Driver

Document Number: X40A-E-006-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. Microsoft and Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

WINDOWS® CE 3.0 USB DRIVER

The Windows CE v3.0 USB driver for the S1D13A05 LCD/USB Companion Chip is a client driver, which supports Microsoft ActiveSync 3.1. This driver is intended as "reference" source code for OEMs developing for the Microsoft Window CE platform and provide a basis for OEMs to develop their own drivers.

This document and the source code for the Windows CE v3.0 USB driver is updated as appropriate. Before beginning any development, please check the Epson Research and Development Website at www.erd.epson.com for the latest revisions.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

Windows® CE 3.x USB Driver Issue Date: 02/04/04

Example Driver Builds

Build for CEPC (X86) on Windows CE Platform Builder 3.00 using the GUI Interface

- 1. Install Microsoft Windows NT v4.0, Windows 2000, or Windows XP.
- 2. Install Platform Builder 3.00.
- 3. Start Platform Builder by double-clicking on the Microsoft Windows CE Platform Builder icon or by selecting it through the start menu.
- 4. Create a new project.
 - a. Select File | New.
 - b. In the dialog box, select the Platforms tab.
 - c. In the Platforms dialog box:
 - select "WCE Platform"
 - set a location for the project (such as x:\myproject)
 - set the platform name (such as myplatform)
 - set the processor to "Win32 (WCE x86)"
 - d. Click the OK button.
 - e. In the WCE Platform Step 1 of 2 dialog box, select "CEPC".
 - f. Click the Next button.
 - g. In the WCE Platform Step 2 of 2 dialog box, select "Maximum OS (Maxall)".
 - h. Click the Finish button.
 - i. In the New Platform Information dialog box, click the OK button.
- 5. Set the active configuration to "Win32 (WCE x86) Release".
 - a. From the Build menu, select "Set Active Configuration".
 - b. Select "MYPLATFORM Win32 (WCE x86) Release".
 - c. Click the OK button.
- 6. Add the environment variable USB_S1D13A05.
 - a. From the Platform menu, select "Settings".
 - b. Select the "Environment" tab.
 - c. In the Variable box, type "USB_S1D13A05".
 - d. In the Value box, type "1".
 - e. Click the Set button.
 - f. Click the OK button.

- 7. Create a new directory 13A05USB, under x:\wince300\platform\cepc\drivers, and copy the 13A05USB driver source code into this new directory.
- 8. Add the 13A05USB driver component.
 - a. From the Platform menu, select "Insert | User Component".
 - b. Set Files of type: to "All Files (*.*)".
 - c. Select the file x:\wince300\platform\cepc\drivers\13A05USB\sources.
 - d. Click the OK button.
 - e. In the User Component Target File dialog box, select browse and then select the path/filename of the file **sources**.
 - f. Click the OK button.
- 9. Click the Parameter View Tab on the bottom of the platform window. Show the tree for MYPLATFORM Parameters by clicking on the '+' sign at the root of the tree. Expand the WINCE300 tree and then click the "Hardware Specific Files" and then double click the "PLATFORM.BIB". Find the section shown below, and insert the lines as marked:

IF IMGUSB

IF CEPC_UHCI

uhci.dll \$(_FLATRELEASEDIR)\uhci.dll NK SH

ENDIF

IF CEPC OHCI

ohci.dll \$(_FLATRELEASEDIR)\ohci.dll NK SH

ENDIF

usbd.dll \$(_FLATRELEASEDIR)\usbd.dll NK SH usbhid.dll \$(_FLATRELEASEDIR)\usbhid.dll NK SH

ENDIF

IF USB_S1D13A05 ;Insert this line 13a05usb.dll \$(_FLATRELEASEDIR)\13a05usb.dll NK SH ;Insert this line ENDIF ;Insert this line

ENDIF

10. Save the file **platform.bib**.

11. From the Platform window, click the Parameter View Tab. Show the tree for MY-PLATFORM Parameters by clicking on the '+' sign at the root of the tree. Expand the WINCE300 tree and click the "Hardware Specific Files", then double click the "PLATFORM.REG". Insert the following section at the top of the file **platform.reg** to include the settings for 13A05USB driver.

```
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\13A0XUSB]

"DII"="13A05USB.dII"

"Prefix"="COM"

"Tsp"="Unimodem.dII"

"DeviceArrayIndex"=dword:1

"Order"=dword:2

"DeviceType"=dword:0

"FriendlyName"="S1D13A05 USB"

"DevConfig"=hex: 10,00, 00,00, 05,00,00,00, 10,01,00,00, 00,4B,00,00, 00,00, 00, 00, 00, 00,00,00,00

; "PhysicalAddress"=dword:0x08000000 ; for non-cepc environment only

; "IRQ"=dword:05 ; for non-cepc environment only
```

- 12. Save the file **platform.reg**.
- 13. From the Build menu, select "Rebuild Platform" to generate a Windows CE image file (nk.bin) in the project directory x:\myproject\myplatform\reldir\x86_release\nk.bin.

Installation and Execution from CEPC Environment

Once the **nk.bin** file is built, the CEPC environment can be started by booting from a floppy (step 1) or a hard drive (step 2) configured with a Windows 9x operating system or EBOOT (step 3) across a network. All methods are described below.

- 1. To start CEPC by booting from a floppy drive:
 - a. Create a bootable floppy disk.
 - b. Copy **himem.sys** to the floppy disk.
 - c. Edit **config.sys** on the floppy disk to contain only the following line:

device=a:\himem.sys

d. Edit **autoexec.bat** on the floppy disk to contain the following line:

loadcepc /B:38400 /C:1 c:\nk.bin

- e. Search for **loadcepc.exe** in your Windows CE directories, and copy the file to the bootable floppy disk.
- f. Copy **nk.bin** to c:\.
- g. Boot the system from the bootable floppy disk.
- 2. To start CEPC by booting from a hard drive:
 - a. Search for **loadcepc.exe** in the Windows CE directories, and copy the file to C:\.
 - b. Edit **config.sys** on the hard drive to contain only the following line:

device=c:\himem.sys

c. Edit **autoexec.bat** on the hard drive to contain the following line:

loadcepc /B:38400 /C:1 c:\nk.bin

- d. Copy **nk.bin** to C:\.
- e. Boot the system
- 3. To start CEPC using Eboot:

Eboot is one of three boot loader models used by Platform Builder v3.0 to load a Windows CE image onto a target machine. The Eboot method uses an ethernet network card to move the image from the host computer to the target computer.

The Microsoft supplied version of Eboot does not function correctly with several Epson evaluation boards. These evaluation boards set the PCI class identifier field to "undefined PCI device". The Microsoft Eboot loader does not allow undefined PCI classes and the boot process halts. The Epson supplied version of eboot.bin fixes the "undefined PCI class" limitation. The following describes the steps required to use the Epson supplied eboot.bin with the Microsoft Eboot loader. Please refer to Platform

Builder and MSDN documentation for more information regarding the use of Eboot.

In this example, *host machine* refers to the computer on which Platform Builder has been installed and where the **nk.bin** image is located. *Target machine* refers to the computer on which the Windows CE image is to be run. It is assumed that before attempting to eboot the target machine the Windows CE image will be built and ready on the host machine.

a. Create a bootable floppy disk.

The following files must be present on the disk:

himem.sys(found on your CE development platform)loadcepc.exe(found on your CE development platform)

eboot.bin(supplied by Epson)config.sys(supplied by Epson)autoexec.bat(supplied by Epson)

Note: The **config.sys** and **autoexec.bat** files are configured to allow loading of a local copy of the **nk.bin** image also.

b. Modify **autoexec.bat**

It may be necessary to modify the network card settings in **autoexec.bat**. Locate the lines containing "set NET_IRQ" and "set NET_IOBASE" and ensure the values match the settings of your network card. If necessary, change the values to reflect the settings on your card (typically IRQ: 5 and IOBASE: 340).

- c. Boot the target CEPC machine using the floppy disk and choose the eboot option.
- d. Configure remote services on the host machine. This must be done only once.
 - *i*. On the host machine, open the project workspace in Platform Builder. From the Platform Builder menu select "Target", and then select "Configure Remote Services".
 - ii. Under the Services tab, set the top two drop down boxes to "Ethernet".
 - *iii*. Under the Ethernet tab, a CEPC machine should appear in the New Devices box. Select the CEPC machine and click on the arrow button to the right of it.
- e. Normal Eboot Operation
 - a. On the host machine, open the project workspace in Platform Builder then select the menu option "Target", and then select "Configure Remote Services".
 - b. Select the Ethernet tab and ensure that "Current Device:" is the intended target machine. If not, select the machine from the list or configure a new remote service (see step d)
 - c. Select the menu option "Target", and select "Download Image". The download may take a few minutes.

Note: Problems with steps d or e may be due to incorrect synchronization between the host and target machines. Try re-booting the target machine from the floppy and repeating the step.

- 4. Install Microsoft Windows on a host machine.
- 5. Install ActiveSync 3.1 on the host machine.
- 6. Install the included **wceusbsh.sys** on the host machine, by following the procedures below:
 - a. Unzip the file **wceusbsh.zip** to a directory on your hard drive.
 - b. Locate the file wceusbsh.inf.
 - c. Right click the "WCEUSBSH.INF" file icon.
 - d. Select Install.
- 7. Connect a USB cable from the USB device (S5U13A05B00C board) to the USB host machine.
- 8. Boot the Windows CE machine from a floppy (created in step 1) or from the hard drive (created in step 2).
- 9. From the Windows CE desktop:
 - click the Start button
 - click Run
 - click Browse.
- 10. Find the file **repllog.exe** (by default it resides in \windows) and select it.
- 11. Click the OK button. The ActiveSync window on the host desktop is automatically invoked, and the New Partnership window is opened automatically. This window prompts: "Would you like to set up a partnership?"
- 12. Select "No".
- 13. Click the Next button.
- 14. The Microsoft ActiveSync Window is opened automatically and should display "Guest connected".
- 15. Click the "Explore" button from the Microsoft ActiveSync window. File transfers are now possible through the USB cable.

Compile Switches

There are switches specific to the S1D13A05 USB driver which affect the USB driver. These switches are added or removed from the compile switches in the file **sources**.

CEPC

This option must be set for the CEPC platform and removed for all other platforms.

EPSONMESSAGES

This debugging option enables the display of EPSON-specific debug messages. These debug message are sent to the serial debugging port. This option should be disabled unless you are debugging the USB driver, as they will significantly impact the performance of the USB driver.

Address and IRQ Modifications

- The USB driver is CPU independent, and it can be used on other platforms that support USB under Windows CE Platform Builder 3.0. If this driver is to support non-cepc platforms, the file **project.reg** requires editing to set the correct values of "PhysicalAddress" and "IRQ".
- The variables DEFAULT_PHYSICAL_ADDRESS and DEFAULT_IRQ in the file **13a0xhw.h** must be changed to reflect the values required by each implementation.
- If the entries of "PhysicalAddress" and "IRQ" are removed from the project.reg file, the USB driver uses the values of DEFAULT_PHYSICAL_ADDRESS and DEFAULT_IRQ contained in the file 13a0xhw.h.

Comments

- S5U13A05B00C Evaluation Board must be configured to enable USB support. This includes configuration changes to the dip switch and confirming that the proper USBClk is available on U13. See the S5U13A05B00C Rev. 1.0 Evaluation Board User Manual, document number X40A-G-004-xx.
- This USB driver is independent of the S1D13A05 Windows CE v3.x display driver, but may be run together with S1D13A05 display driver. For information on the S1D13A05 CE Display Driver, see the *Windows CE 3.x Display Driver*, document number X40A-E-002-xx.
- At this time, the driver has been tested on the x86 CPUs and has been run with Platform Builder v3.00.
- The Microsoft ActiveSync files **wceusbsh.inf** (installer) and **wceusbsh.sys** (host side USB driver) have been included because the S1D13A0x USB controller uses fixed endpoint mapping that differs from that used by the Microsoft supplied ActiveSync USB host driver. Neither the ActiveSync driver nor the S1D13A0x endpoints can be dynamically modified, therefore the ActiveSync driver was replaced with a version that understands the S1D13A0x endpoint structure.

After installing ActiveSync on your development machine, use the included installer to update the host USB driver.

When device development is complete, the updated **wceusbsh.sys** must be included in your distribution package replacing the Microsoft supplied **wceusbsh.sys**. This version of **wceusbsh.sys** is backwards compatible with previous versions.

Windows® CE 3.x USB Driver Issue Date: 02/04/04

References

Documents

- Epson Research and Development, Inc., *S1D13A05 Hardware Functional Specification*, Document Number X40A-A-001-xx.
- Epson Research and Development, Inc., *S1D13A05 Programming Notes and Examples*, Document Number X40A-G-003-xx.
- Epson Research and Development, Inc., 13A05CFG Configuration Utility User Manual, Document Number X40A-B-001-xx.

Document Sources

• Epson Research and Development Website: www.erd.epson.com.

Sales and Technical Support

EPSON LCD/USB Companion Chips (S1D13Axx)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812

Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

Windows® CE 3.x USB Driver Issue Date: 02/04/04

S1D13A05 LCD/USB Companion Chip

Interfacing to the Toshiba MIPS TMPR3905/3912 Microprocessors

Document Number: X40A-G-002-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1	Intro	oduct	ioi	n .															-		-	•					•	 		. 7
2	Inte	rfacin	ıg '	to	th	e T	ΓМ	IPF	39	90	5/	12																		. 8
	2.1	The '	То	shi	ba	TN	ИP	R3	90	5/1	12	Sy	ste	em	Bu	ıs														. 8
	2	2.1.1	C)ve	rvi	ew	7																							. 8
	2	2.1.2	C	arc	1 A	cc	ess	s C	ycl	es																				. 8
3	S1D	13A0	5 H	Ю	st	Вι	JS	Int	ter	fa	ce	. •																 		10
	3.1	Host	Bı	us I	[nte	erfa	ace	e Pi	in I	Ma	ıpp	oin	g																	10
	3.2	Host	Bı	us I	[nte	erfa	ace	e Si	ign	als	S																			11
4	Tos	hiba 1	ΤМ	PF	₹39	90 !	5/1	12	to	S1	1 D	13	BA	05	In	ter	fa	Ce	•											12
	4.1	Hard	lwa	ıre	De	SCI	rip	tio	n																					12
	4.2	S1D	13	40.	5 F	Iar	dw	are	e C	on	ıfiş	gur	ati	on																14
	4.3	Mem	or	y N	Лај	ppi	ng	an	d A	٩li	as	ing	5																	14
5	Soft	ware					• (15
6	Refe	erenc	es																									 		16
	6.1	Docu	um	ent	S																									16
	6.2	Docu	um	ent	Sc	our	ce	s																						16
7	Sale	s and	T b	ec	hr	١ic	al	Sι	ıpp	၁၀	rt																			17
	7.1	EPSO	ON	l L	CE)/U	JSF	3 C	on	npa	ani	ion	C	hip	s (S 1	D1	3 <i>A</i>	\ 0.	5)										17
	7.2	Tosh	niba	a N	ΠP	S -	ГΝ	1PF	39	905	5/1	21	Pro	ce	SSO	r														17

List of Tables

	Host Bus Interface Pin Mapping	
	List of Figures	
•	Toshiba 3905/12 PC Card Memory/Attribute Cycle	
Figure 2-2:	Toshiba 3905/12 PC Card IO Cycle	9

1 Introduction

This application note describes the hardware and software environment necessary to provide an interface between the S1D13A05 USB/LCD Companion Chip and the Toshiba MIPS TMPR3905/3912 processors.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the TMPR3905/12

2.1 The Toshiba TMPR3905/12 System Bus

The TMPR39XX family of processors features a high-speed system bus typical of modern MIPS RISC microprocessors. This section provides an overview of the operation of the CPU bus in order to establish interface requirements.

2.1.1 Overview

The TMPR3905/12 is a highly integrated controller developed for handheld products. The microprocessor is based on the R3900 MIPS RISC processor core. The TMPR3905/12 implements an external 26-bit address bus and a 32-bit data bus allowing it to communicate with its many peripheral units. The address bus is multiplexed (A[12:0]) using an address latch signal (ALE) which controls the driving of the address onto the address bus. The full 26-bit address bus (A[25:0]) is generated to devices not capable of receiving a multiplexed address, using external latches (controlled by ALE).

The TMPR3905/12 provides two, revision 2.01 compliant, PC Card slots. The 16-bit PC Card slots provide a 26-bit multiplexed address and additional control signals which allow access to three 64M byte address ranges: IO, memory, and attribute space. The signal CARDREG* selects memory space when high and attribute or IO space when low. Memory and attribute space are accessed using the write and read enable signals (WE* and RD*). When CARDREG* is low, card IO space is accessed using separate write (CARDIOWR*) and read (CARDIORD*) control signals.

2.1.2 Card Access Cycles

A data transfer is initiated when the address is placed on the PC Card bus and one, or both, of the card enable signals (CARD1CSL* and CARD1CSH*) are driven low. CARDREG* is inactive for memory and IO cycles. If only CARD1CSL* is driven low, 8-bit data transfers are enabled and A0 specifies whether the even or odd data byte appears on the PC Card data bus lines D[7:0]. If only CARD1CSH* is driven low, an odd byte transfer occurs on PC Card data lines D[15:8]. If both CARD1CSL* and CARD1CSH* are driven low, a 16-bit word transfer takes place on D[15:0].

During a read cycle, either RD* or CARDIORD* is driven low depending on whether a memory or IO cycle is specified. A write cycle is specified by driving WE* (memory cycle) or CARDIOWR* (IO cycle) low. The cycle can be lengthened by driving CARD1WAIT* low for the time required to complete the cycle.

Figure 2-1: "Toshiba 3905/12 PC Card Memory/Attribute Cycle," illustrates a typical memory/attribute cycle on the Toshiba 3905/12 PC Card bus.

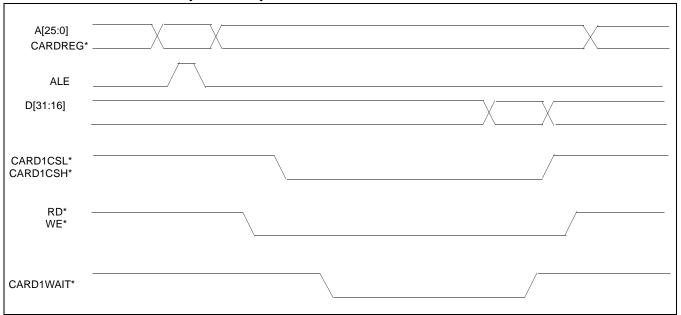


Figure 2-1: Toshiba 3905/12 PC Card Memory/Attribute Cycle

Figure 2-2: "Toshiba 3905/12 PC Card IO Cycle," illustrates a typical IO cycle on the Toshiba 3905/12 PC Card bus.

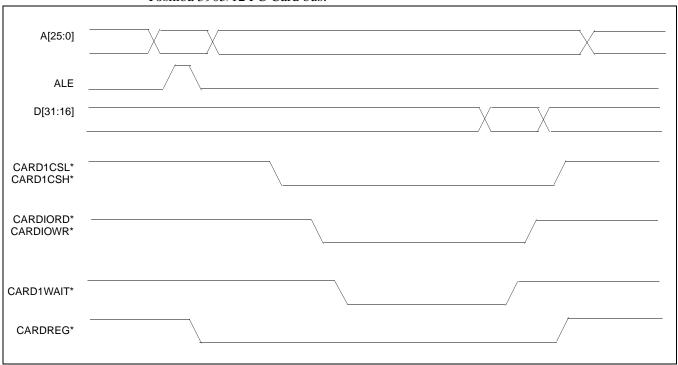


Figure 2-2: Toshiba 3905/12 PC Card IO Cycle

3 S1D13A05 Host Bus Interface

The S1D13A05 directly supports multiple processors. The S1D13A05 implements a 16-bit Generic #2 Host Bus Interface which is most suitable for connection to the Toshiba TMPR3905/12 microprocessor.

The Generic #2 Host Bus Interface is selected by the S1D13A05 on the rising edge of RESET#. After releasing reset the bus interface signals assume their selected configuration. For details on the S1D13A05 configuration, see Section 4.2, "S1D13A05 Hardware Configuration" on page 14.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13A05 Pin Names	Toshiba TMPR3905/12
AB[17:0]	External Decode
DB[15:8]	D[23:16]
DB[7:0]	D[31:24]
WE1#	External Decode
CS#	External Decode
M/R#	External Decode
CLKI	DCLKOUT
BS#	Connect to IO _{VDD} from the S1D13A05
RD/WR#	Connect to IO _{VDD} from the S1D13A05
RD#	CARDIORD*
WE0#	CARDIOWR*
WAIT#	CARD1WAIT*
RESET#	system RESET

Table 3-1: Host Bus Interface Pin Mapping

3.2 Host Bus Interface Signals

The Host Bus Interface requires the following signals.

- CLKI is a clock input required by the S1D13A05 Host Bus Interface as a source for its internal bus and memory clocks. This clock is typically driven by the host CPU system clock. For example, DCLKOUT from the Toshiba TMPR3905/12.
- The address inputs AB[12:0] are connected directly to the TMPR3905/12 address bus. Since the TMPR3905/12 has a multiplexed address bus, the other address inputs A[17:13] must be generated using an external latch controlled by the address latch enable signal (ALE). The low data byte on the TMPR3905/12 data bus for 16-bit ports is D[31:24] and connects to the S1D13A05 low data byte, D[7:0]. The high data byte on the TMPR3905/12 data bus for 16-bit ports is D[23:16] and connects to the S1D13A05 high data byte, D[15:0]. The hardware engineer must ensure that CNF4 selects the proper endian mode upon reset.
- Chip Select (CS#) is driven by external decoding circuitry to select the S1D13A05.
- M/R# (memory/register) selects between memory or register accesses. This signal is generated by the external address decode circuitry. For this example, M/R# is connected to address line A18, allowing system address A18 to select between memory or register accesses.
- WE1# is connected to CARD1CSH* and is the high byte enable for both read and write cycles.
- WE0# is connected to CARDIOWR* (the write enable signal) and must be driven low when the Toshiba TMPR3905/12 is writing data to the S1D13A05.
- RD# is connected to CARDIORD* (the read enable signal) and must be driven low when the Toshiba TMPR3905/12 is reading data from the S1D13A05.
- WAIT# connects to CARD1WAIT* and is a signal which is output from the S1D13A05 to the TMPR3905/12 that indicates when data is ready (read cycle) or accepted (write cycle) on the host bus. Since host CPU accesses to the S1D13A05 may occur asynchronously to the display update, it is possible that contention may occur in accessing the S1D13A05 internal registers and/or display buffer. The WAIT# line resolves these contentions by forcing the host to wait until the resource arbitration is complete.
- The Bus Status (BS#) and Read/Write (RD/WR#) signals are not used in this implementation of the Toshiba TMPR3905/12 using the Generic #2 Host Bus Interface. These pins must be tied high (connected to IO V_{DD}).

4 Toshiba TMPR3905/12 to S1D13A05 Interface

4.1 Hardware Description

In this implementation, the S1D13A05 occupies the TMPR3905/12 PC Card slot #1 IO address space. IO address space closely matches the timing parameters for the S1D13A05 Generic #2 Host Bus Interface.

The address bus of the TMPR3905/12 PC Card interface is multiplexed and must be demultiplexed using an advanced CMOS latch (e.g., 74AHC373).

BS# (bus start) and RD/WR# are not used in this implementation and should be tied high (connected to IO V_{DD}).

A pull-up resistor is attached to WAIT# to speed up its rise time when terminating a cycle.

The following diagram demonstrates a typical implementation of the TMPR3905/12 to S1D13A05 interface.

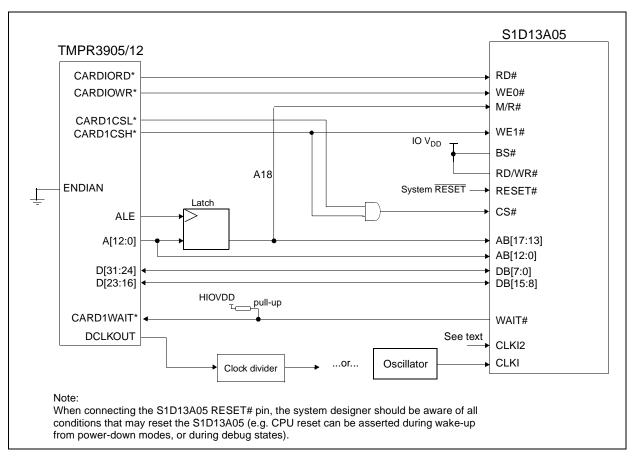


Figure 4-1: S1D13A05 to TMPR3905/12 Direct Connection

The Generic #2 Host Bus Interface control signals of the S1D13A05 are asynchronous with respect to the S1D13A05 bus clock. This gives the system designer full flexibility to choose the appropriate source (or sources) for CLKI and CLKI2. The choice of whether both clocks should be the same, and whether to use DCLKOUT (divided) as clock source, should be based on the desired:

- pixel and frame rates.
- power budget.
- part count.
- maximum S1D13A05 clock frequencies.

The S1D13A05 also has internal clock dividers providing additional flexibility.

4.2 S1D13A05 Hardware Configuration

The S1D13A05 latches CNF6 through CNF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

The table below shows the configuration settings important to the Generic #2 host bus interface used by the Toshiba TMPR3905/12.

Table 4-1: Summary of Power-On/Reset Options

S1D13A05	Power-On/Reset State													
Configuration Input	1 (connected to IO V _{DD})	0 (connected to V _{SS})												
CNF4,	Select host bus interface as follows:													
CNF[2:0]	CNF4 CNF2 CNF1 CNF0 H	ost Bus												
J [2.0]	0 1 0 0 G	eneric #2, Little Endian												
CNF3	Reserved. Must be set to 1.													
CNF5	WAIT# is active high	WAIT# is active low												
CNF6	CLKI to BCLK divide ratio 2:1	CLKI to BCLK divide ratio 1:1												
•														

configuration for Toshiba TMPR3905/3912 microprocessor

4.3 Memory Mapping and Aliasing

In this implementation the TMPR3905/12 control signal CARDREG* is ignored. This means that the S1D13A05 takes up the entire PC Card slot 1.

The S1D13A05 is a memory mapped device and uses two 256K byte blocks which are selected using A18 from the TMPR3905/12 (A18 is connected to the S1D13A05 M/R# pin). The internal registers occupy the first 256K byte block and the 256K byte display buffer occupies the second 256K byte block.

The registers occupy the range 0h through 3FFFh while the on-chip display memory occupies the range 40000h through 68000h. Demultiplexed address lines A[25:19] are ignored. Therefore, the S1D13A05 is aliased at 256K byte intervals over the 64M byte PC Card slot #1 memory space.

Note

If aliasing is undesirable, additional decoding circuitry must be added.

5 Software

Test utilities and display drivers are available for the S1D13A05. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13A05CFG (see document number X40A-B-001-xx), or by directly modifying the source. The display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13A05 test utilities and display drivers are available from your sales support contact (see Section 7, "Sales and Technical Support") or www.erd.epson.com.

6 References

6.1 Documents

- Toshiba America Electrical Components, Inc., TMPR3905/12 Specification.
- Epson Research and Development, Inc., *S1D13A05 Hardware Functional Specification*, Document Number X40A-A-001-xx.
- Epson Research and Development, Inc., *S1D13A05 Programming Notes and Examples*, Document Number X40A-G-003-xx.

6.2 Document Sources

- Toshiba America Electrical Components Website: www.toshiba.com/taec.
- Epson Research and Development Website: www.erd.epson.com.

7 Sales and Technical Support

7.1 EPSON LCD/USB Companion Chips (S1D13A05)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346 http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

7.2 Toshiba MIPS TMPR3905/12 Processor

http://www.toshiba.com/taec/nonflash/indexproducts.html

S1D13A05 LCD/USB Companion Chip

Interfacing to the PC Card Bus

Document Number: X40A-G-005-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

Table of Contents

1	Intro	luction	 	 	 				7
2	Inter	acing to the PC Card Bus	 	 	 				8
	2.1	The PC Card System Bus	 						. 8
	2	1.1 PC Card Overview	 	 	 				8
	2	1.2 Memory Access Cycles	 	 	 				8
3	S1D	3A05 Host Bus Interface	 	 	 	 		. 1	0
	3.1	Host Bus Interface Pin Mapping	 					. 1	10
	3.2	Host Bus Interface Signals	 					. 1	11
4	PC C	ard to S1D13A05 Interface	 	 	 	 		. 1	12
	4.1	Hardware Connections	 					. 1	12
	4.2	S1D13A05 Hardware Configuration	 					. 1	13
	4.3	Register/Memory Mapping	 					. 1	13
5	Soft	are	 	 		 		. 1	4
6	Refe	ences	 	 	 	 		. 1	15
	6.1	Documents	 	 				. 1	15
	6.2	Document Sources	 					. 1	15
7	Sale	and Technical Support	 	 	 	 		. 1	16
	7.1	EPSON LCD/USB Companion Chips (S1D13A05)	 					. 1	16
	7.2	PC Card Standard						1	16

List of Tables

Host Bus Interface Pin Mapping
List of Figures
PC Card Read Cycle

1 Introduction

This application note describes the hardware and software environment required to interface the S1D13A05 LCD/USB Companion Chip and the PC Card (PCMCIA) bus.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the PC Card Bus

2.1 The PC Card System Bus

PC Card technology has gained wide acceptance in the mobile computing field as well as in other markets due to its portability and ruggedness. This section is an overview of the operation of the 16-bit PC Card interface conforming to the PCMCIA 2.0/JEIDA 4.1 Standard (or later).

2.1.1 PC Card Overview

The 16-bit PC Card provides a 26-bit address bus and additional control lines which allow access to three 64M byte address ranges. These ranges are used for common memory space, IO space, and attribute memory space. Common memory may be accessed by a host system for memory read and write operations. Attribute memory is used for defining card specific information such as configuration registers, card capabilities, and card use. IO space maintains software and hardware compatibility with hosts such as the Intel x86 architecture, which address peripherals independently from memory space.

Bit notation follows the convention used by most microprocessors, the high bit is the most significant. Therefore, signals A25 and D15 are the most significant bits for the address and data bus respectively.

Support is provided for on-chip DMA controllers. To find further information on these topics, refer to Section 6, "*References*" on page 15.

PC Card bus signals are asynchronous to the host CPU bus signals. Bus cycles are started with the assertion of either the -CE1 and/or the -CE2 card enable signals. The cycle ends once these signals are de-asserted. Bus cycles can be lengthened using the -WAIT signal.

Note

The PCMCIA 2.0/JEIDA 4.1 (and later) PC Card Standard support the two signals -WAIT and RESET which are not supported in earlier versions of the standard. The -WAIT signal allows for asynchronous data transfers for memory, attribute, and IO access evales. The PESET signal allows resetting of the pard configuration by the reset

cess cycles. The RESET signal allows resetting of the card configuration by the reset line of the host CPU.

2.1.2 Memory Access Cycles

A data transfer is initiated when the memory address is placed on the PC Card bus and one, or both, of the card enable signals (-CE1 and -CE2) are driven low. -REG must be kept inactive. If only -CE1 is driven low, 8-bit data transfers are enabled and A0 specifies whether the even or odd data byte appears on data bus lines D[7:0]. If both -CE1 and -CE2 are driven low, a 16-bit word transfer takes place. If only -CE2 is driven low, an odd byte transfer occurs on data lines D[15:8].

During a read cycle, -OE (output enable) is driven low. A write cycle is specified by driving -OE high and driving the write enable signal (-WE) low. The cycle can be lengthened by driving -WAIT low for the time needed to complete the cycle.

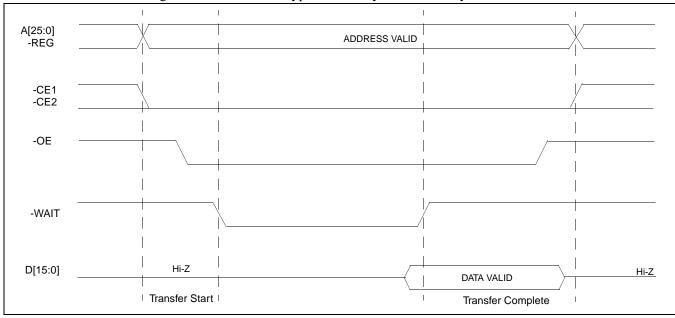


Figure 2-1: illustrates a typical memory access read cycle on the PC Card bus.

Figure 2-1: PC Card Read Cycle

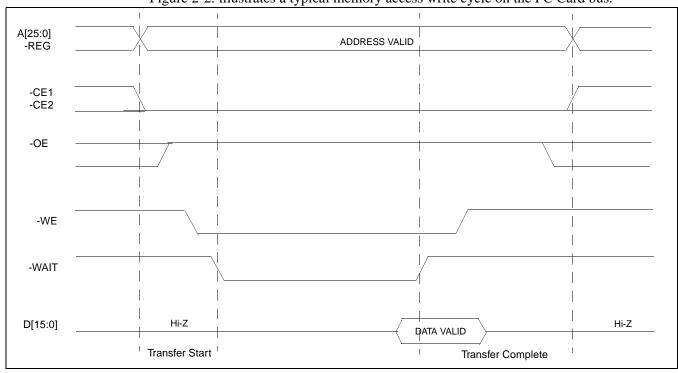


Figure 2-2: illustrates a typical memory access write cycle on the PC Card bus.

Figure 2-2: PC Card Write Cycle

3 S1D13A05 Host Bus Interface

The S1D13A05 directly supports multiple processors. The S1D13A05 implements a 16-bit Generic #2 Host Bus Interface which is most suitable for direct connection to the PC Card bus. Generic #2 supports an external Chip Select, shared Read/Write Enable for high byte, and individual Read/Write Enable for low byte.

The Generic #2 Host Bus Interface is selected by the S1D13A05 on the rising edge of RESET#. After RESET# is released, the bus interface signals assume their selected configuration. For details on the S1D13A05 configuration, see Section 4.2, "S1D13A05 Hardware Configuration" on page 13.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13A05 Pin Names	PC Card (PCMCIA)
AB[17:0]	A[17:0]
DB[15:0]	D[15:0]
WE1#	-CE2
CS#	External Decode
M/R#	A18
CLKI	see note
BS#	Connect to IO _{VDD} from the S1D13A05
RD/WR#	Connect to IO _{VDD} from the S1D13A05
RD#	-OE
WE0#	-WE
WAIT#	-WAIT
RESET#	Inverted RESET

Table 3-1: Host Bus Interface Pin Mapping

Note

Although a clock is not directly supplied by the PC Card interface, one is required by the S1D13A05 Generic #2 Host Bus Interface. For an example of how this can be accomplished see the discussion on CLKI in Section 3.2, "Host Bus Interface Signals" on page 11.

3.2 Host Bus Interface Signals

The S1D13A05 Generic #2 Host Bus Interface requires the following signals from the PC Card bus.

- CLKI is a clock input which is required by the S1D13A05 Host Bus Interface as a source for its internal bus and memory clocks. This clock is typically driven by the host CPU system clock. Since the PC Card signalling is independent of any clock, CLKI can come from any oscillator already implemented. For example, the source for the CLKI2 input of the S1D13A05 may be used.
- The address inputs AB[17:0], and the data bus DB[15:0], connect directly to the PC Card address (A[17:0]) and data bus (D[15:0]), respectively. CNF4 must be set to select little endian mode.
- Chip Select (CS#) is driven by decoding the high-order address lines to select the proper register and memory address space.
- M/R# (memory/register) selects between memory or register accesses. This signal is generated by the external address decode circuitry. For this example, M/R# is connected to address line A18, allowing system address A18 to select between memory or register accesses.
- WE1# connects to -CE2 (the high byte chip select signal from the PC Card interface) which in conjunction with address bit 0 allows byte steering of read and write operations
- WE0# connects to -WE (the write enable signal form the PC Card bus) and must be driven low when the PC Card bus is writing data to the S1D13A05.
- RD# connects to -OE (the read enable signal from the PC Card bus) and must be driven low when the PC Card bus is reading data from the S1D13A05.
- WAIT# is a signal output from the S1D13A05 that indicates the PC Card bus must wait
 until data is ready (read cycle) or accepted (write cycle) on the host bus. Since PC Card
 bus accesses to the S1D13A05 may occur asynchronously to the display update, it is
 possible that contention may occur in accessing the S1D13A05 internal registers and/or
 display buffer. The WAIT# line resolves these contentions by forcing the host to wait
 until the resource arbitration is complete.
- The Bus Status (BS#) and Read/Write (RD/WR#) signals are not used in this implementation of the PC Card bus using the Generic #2 Host Bus Interface. These pins must be tied high (connected to IO V_{DD}).
- The RESET# (active low) input of the S1D13A05 may be connected to the PC Card RESET (active high) using an inverter.

4 PC Card to S1D13A05 Interface

4.1 Hardware Connections

The S1D13A05 is interfaced to the PC Card bus with a minimal amount of glue logic. In this implementation, the address inputs (AB[17:0]) and data bus (DB[15:0] connect directly to the CPU address (A[17:0]) and data bus (D[15:0]).

The PC Card interface does not provide a bus clock, so one must be supplied for the S1D13A05. Since the bus clock frequency is not critical, nor does it have to be synchronous to the bus signals, it may be the same as CLKI2.

BS# (bus start) and RD/WR# are not used by the Generic #2 Host Bus Interface and should be tied high (connected to IO $V_{\rm DD}$).

The following diagram shows a typical implementation of the PC Card to S1D13A05 interface.

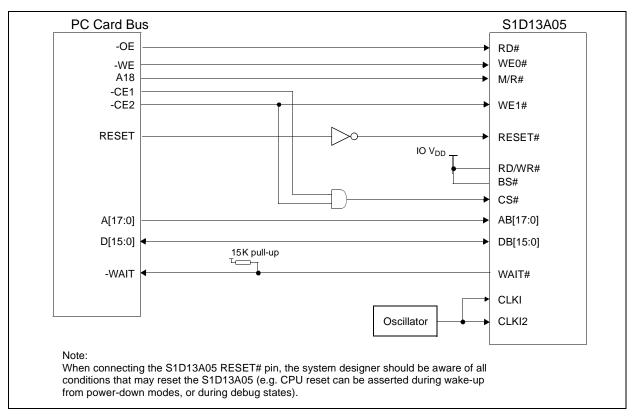


Figure 4-1: Typical Implementation of PC Card to S1D13A05 Interface

4.2 S1D13A05 Hardware Configuration

The S1D13A05 uses CNF6 through CNF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

The following table shows the configuration required for this implementation of a S1D13A05 to PC Card bus interface.

Table 4-1: Summary of Power-On/Reset Options

S1D13A05	Power-On/Reset State													
Configuration Input	1 (connected to IO V _{DD})	0 (connected to V _{SS})												
CNF4, CNF[2:0]	Select host bus interface as follows: CNF4 CNF2 CNF1 CNF0 0 1 0 0	Host Bus Generic #2, Little Endian												
CNF3	Reserved. Must be set to 1.													
CNF5	WAIT# is active high	WAIT# is active low												
CNF6	CLKI to BCLK divide ratio 2:1	CLKI to BCLK divide ratio 1:1												
	configuration for PC Card bus													

4.3 Register/Memory Mapping

The S1D13A05 is a memory mapped device. The S1D13A05 uses two 256K byte blocks which are selected using A18 from the PC Card bus (A18 is connected to the S1D13A05 M/R# pin). The internal registers occupy the first 256K byte block and the 256K byte display buffer occupies the second 256K byte block.

The PC Card socket provides 64M bytes of memory address space. However, the S1D13A05 only needs a 512K byte block of memory to accommodate its 256K byte display buffer and register set. For this reason, only address bits A[18:0] are used while A[25:19] are ignored. The S1D13A05's memory and registers are aliased every 512K bytes in the 64M byte PC Card memory address space.

Note

If aliasing is not desirable, the upper addresses must be fully decoded.

5 Software

Test utilities and display drivers are available for the S1D13A05. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13A05CFG (see document number X40A-B-001-xx), or by directly modifying the source. The display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13A05 test utilities and display drivers are available from your sales support contact (see Section 7, "Sales and Technical Support") or www.erd.epson.com.

6 References

6.1 Documents

- PC Card (PCMCIA) Standard March 1997.
- Epson Research and Development, Inc., *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx.
- Epson Research and Development, Inc., *S1D13A05 Programming Notes and Examples*, Document Number X40A-G-003-xx.

6.2 Document Sources

- PC Card Website: www.pc-card.com.
- Epson Research and Development Website: www.erd.epson.com.

7 Sales and Technical Support

7.1 EPSON LCD/USB Companion Chips (S1D13A05)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346 http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1
Temasek Avenue #36-00
Millenia Tower
Singapore, 039192
Tel: 337-7911
Fax: 334-2716

http://www.epson.com.sg/

7.2 PC Card Standard

PCMCIA

(Personal Computer Memory Card International Association)

2635 North First Street, Suite 209 San Jose, CA 95134 Tel: (408) 433-2273 Fax: (408) 433-9558 http://www.pc-card.com/

S1D13A05 LCD/USB Companion Chip

Power Consumption

Document Number: X40A-G-006-01

Copyright @ 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All other trademarks are the property of their respective owners.

1 S1D13A05 Power Consumption

S1D13A05 power consumption is affected by many system design variables.

- Input clock frequency (CLKI/CLKI2): the CLKI/CLKI2 frequency determines the LCD frame-rate, CPU performance to memory, and other functions the higher the input clock frequency, the higher the frame-rate, performance and power consumption.
- CPU interface: the S1D13A05 current consumption depends on the BCLK frequency, data width, number of toggling pins, and other factors the higher the BCLK, the higher the CPU performance and power consumption.
- V_{DD} voltage level: the voltage level affects power consumption the higher the voltage, the higher the consumption.
- Display mode: the resolution and color depth affect power consumption the higher the resolution/color depth, the higher the consumption.
- Internal CLK divide: internal registers allow the input clock to be divided before going to the internal logic blocks the higher the divide, the lower the power consumption.

The S1D13A05 supports a software initiated power save mode. The power consumption in power save mode is affected by various system design variables.

• Clock states during the power save mode: disabling the clocks during power save mode has substantial power savings.

Power Consumption S1D13A05
Issue Date: 02/02/08 X40A-G-006-01

1.1 Conditions

The following table provides examples of typical configurations for some 320x240 panels and their effects on power consumption. The following conditions apply.

- All tests had an appropriate LCD panel connected to the LCD outputs of the S1D13A05.
- All tests were run with a static full color palette display.
- All tests were done using the Generic #1 host bus interface (BCLK = 33MHz).

Table 1-1: S1D13A05 Total Power Consumption for 320x240 panels

		Power Consumption (mA)						
	C	S1D13A05 Active						
Resolution	Panel Type	Frame Rate	Clocks (MHz)	Color Depth	CORE	Ю		
		94	CLKI = 33.3 = BCLK	4	2.53	2.96		
		94	CLKI2 = grounded	8	3.05	3.07		
	Color 8-bit Format 2	94	PCLK = MCLK = BCLK / 4 USBCLK = 48 USB in Suspend Mode	16	3.44	2.46		
320x240		0	CLKI = BCLK = grounded CLKI2 = grounded PCLK = MCLK = BCLK / 4 USBCLK = grounded USB in Suspend Mode Power Save Mode		1.50μα	0.25μα		
	Color 4-bit	94	CLKI = 33.3 = BCLK CLKI2 = grounded PCLK = MCLK = BCLK / 4 USBCLK = 48 USB in Suspend Mode		3.48	3.64		
	18-bit TFT	79	CLKI = 33.3 = BCLK CLKI2 = grounded PCLK = MCLK = BCLK / 4 USBCLK = 48 USB in Suspend Mode	16	2.85	2.18		

The following table provides an example of a 320x320 HR-TFT panel and the effects on power consumption for specific environments. The following conditions apply.

- All tests had an appropriate LCD panel connected to the LCD outputs of the S1D13A05.
- All tests were run with a static full color palette display, **except the test where the 2D BitBLT engine was running**.
- All tests were done using the Generic #1 host bus interface (BCLK = 33MHz).

Table 1-2: S1D13A05 Total Power Consumption for 320x320 panels

			Test Condition		Power Cons	umption (mA)
	(COREV _D	$n_D = 2.0V$ and $IOV_{DD} = 3.3V$		S1D13A	05 Active
Resolution	Panel Type	Frame Rate	Clocks (MHz)	Color Depth	CORE	Ю
		64	CLKI = 33.3 = BCLK	4	2.18	2.75
		64	CLKI2 = grounded PCLK = MCLK = BCLK / 4	8	2.65	3.05
		64	USBCLK = 48 USB in Suspend Mode	16	3.02	3.11
		60	CLKI = 33.3 = BCLK MCLK = BCLK / 4 CLKI2 = 7.8 = PCLK USBCLK = 48 USB in Suspend Mode	16	2.93	2.99
320x320	18-bit HR-TFT	64	CLKI = 33.3 = BCLK CLKI2 = grounded PCLK = MCLK = BCLK / 4 USBCLK = 48	16	13.99	3.68
		64	USB Running (loopback) ¹ CLKI = 33.3 = BCLK CLKI2 = grounded PCLK = MCLK = BCLK / 4 USBCLK = 48 USB in Suspend Mode 2D BitBLT engine running ²	16	6.33	4.78
		0	CLKI = BCLK = grounded CLKI2 = grounded PCLK = MCLK = BCLK / 4 USBCLK = grounded USB in Suspend Mode	16	1.50µа	0.25µа
			Power Save Enabled.			

- 1. This test has the S1D13A05 USB module running a loop-back test.
- 2. This test has the 2D BitBLT engine performing a Move BitBLT which requires a high-level of CPU activity and a rapidly updating display.

2 Summary

The system design variables in Section 1, "S1D13A05 Power Consumption" and in the included comparison tables, show that S1D13A05 power consumption depends on the specific implementation. When the S1D13A05 is running power consumption depends on the desired CPU performance and LCD frame-rate. Power save mode consumption depends on the CPU Interface and Input Clock state.

In a typical design environment, the S1D13A05 can be configured to be an extremely power-efficient LCD Controller with high performance and flexibility.

S1D13A05 LCD/USB Companion Chip

Interfacing to the NEC VR4102 / VR4111 Microprocessors

Document Number: X40A-G-007-01

Copyright @ 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All Trademarks are the property of their respective owners.

Table of Contents

1	Intro	luction	7
2	Inter	acing to the NEC VR4102/VR4111	8
	2.1	The NEC VR41XX System Bus	
	2.	1.1 Overview	8
	2.	1.2 LCD Memory Access Cycles	
3	S1D1	3A05 Host Bus Interface	10
	3.1	Host Bus Interface Pin Mapping	10
	3.2	Host Bus Interface Signals	11
4	VR41	02/VR4111 to S1D13A05 Interface	12
	4.1	Hardware Description	12
	4.2	S1D13A05 Hardware Configuration	13
		NEC VR4102/VR4111 Configuration	
5	Softv	are	15
6		ences	
	6.1	Documents	
	6.2	Document Sources	16
7	Sales	and Technical Support	17
	7.1	EPSON LCD/USB Companion Chips (S1D13A05)	17
	7.2	NEC Electronics Inc	17

List of Tables

	Host Bus Interface Pin Mapping	
	List of Figures	
Figure 2-1:	NEC VR4102/VR4111 Read/Write Cycles	9

1 Introduction

This application note describes the hardware and software environment required to interface the S1D13A05 LCD/USB Companion Chip and the NEC VR4102/4111 microprocessor. The NEC VR4102 and VR4111 microprocessors are specifically designed to support an external LCD controller.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the NEC VR4102/VR4111

2.1 The NEC VR41XX System Bus

The VR-Series family of microprocessors features a high-speed synchronous system bus typical of modern microprocessors. Designed with external LCD controller support and Windows® CE based embedded consumer applications in mind, the VR4102/VR4111 offers a highly integrated solution for portable systems. This section is an overview of the operation of the CPU bus to establish interface requirements.

2.1.1 Overview

The NEC VR series microprocessor is designed around the RISC architecture developed by MIPS. The VR4102 microprocessor is designed around the 66MHz VR4100 CPU core and the VR4111 is designed around the 80/100MHz VR4110 core. These microprocessors support 64-bit processing. The CPU communicates with the Bus Control Unit (BCU) through its internal SysAD bus. The BCU in turn communicates with external devices with its ADD and DATA busses which can be dynamically sized for 16 or 32-bit operation.

The NEC VR4102/VR4111 can directly support an external LCD controller through a dedicated bus interface. Specific control signals are assigned for an external LCD controller in order to provide an easy interface to the CPU. A 16M byte block of memory is assigned for the LCD controller with its own chip select and ready signals available. Word or byte accesses are controlled by the system high byte signal (SHB#).

2.1.2 LCD Memory Access Cycles

Once an address in the LCD block of memory is placed on the external address bus (ADD[25:0]) the LCD chip select (LCDCS#) is driven low. The read enable (RD#) or write enable (WR#) signals are driven low for the appropriate cycle. LCDRDY is driven low by the S1D13A05 to insert wait states into the cycle. The system high byte enable is driven low for 16-bit transfers and high for 8-bit transfers.

Figure 2-1: "NEC VR4102/VR4111 Read/Write Cycles," shows the read and write cycles to the LCD Controller Interface.

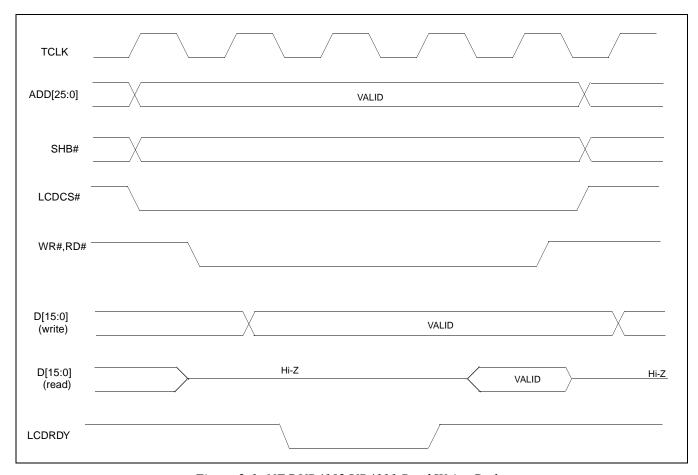


Figure 2-1: NEC VR4102/VR4111 Read/Write Cycles

3 S1D13A05 Host Bus Interface

The S1D13A05 directly supports multiple processors. The S1D13A05 implements a 16-bit Generic #2 Host Bus Interface which is most suitable for direct connection to the NEC VR4102/4111 microprocessor. Generic #2 supports an external Chip Select, shared Read/Write Enable for high byte, and individual Read/Write Enable for low byte.

The Generic #2 Host Bus Interface is selected by the S1D13A05 on the rising edge of RESET#. After RESET# is released, the bus interface signals assume their selected configuration. For details on the S1D13A05 configuration, see Section 4.2, "S1D13A05 Hardware Configuration" on page 13.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13A05 Pin Names	NEC VR4102/4111
AB[17:0]	ADD[17:0]
DB[15:0]	DAT[15:0]
WE1#	SHB#
CS#	LCDCS#
M/R#	ADD18
CLKI	BUSCLK
BS#	Connect to IO _{VDD} from the S1D13A05
RD/WR#	Connect to IO _{VDD} from the S1D13A05
RD#	RD#
WE0#	WR#
LCDRDY	WAIT#
RESET#	system RESET

Table 3-1: Host Bus Interface Pin Mapping

3.2 Host Bus Interface Signals

The Host Bus Interface requires the following signals:

- CLKI is a clock input which is required by the S1D13A05 Host Bus Interface as a source for its internal bus and memory clocks. This clock is typically driven by the host CPU system clock. For this example, BUSCLK from the NEC VR4102/4111 is used for CLKI.
- The address inputs AB[17:0], and the data bus DB[15:0], connect directly to the NEC VR4102/4111 address bus (ADD[17:0]) and data bus (DAT[15:0]), respectively. CNF4 must be set to select little endian mode.
- Chip Select (CS#) must be driven low by LCDCS# whenever the S1D13A05 is accessed by the VR4102/4111.
- M/R# (memory/register) selects between memory or register accesses. This signal is
 generated by the external address decode circuitry. For this example, M/R# is connected
 to address line ADD18, allowing system address ADD18 to select between memory or
 register accesses.
- WE1# connects to SHB# (the high byte enable signal from the NEC VR4102/4111) which in conjunction with address bit 0 allows byte steering of read and write operations.
- WE0# connects to WR# (the write enable signal from the NEC VR4102/4111) and must be driven low when the VR4102/4111 is writing data to the S1D13A05.
- RD# connects to RD# (the read enable signal from the NEC VR4102/4111) and must be driven low when the VR4102/4111 is reading data from the S1D13A05.
- WAIT# connects to LCDRDY and is a signal output from the S1D13A05 that indicates
 the VR4102/VR4111 must wait until data is ready (read cycle) or accepted (write cycle)
 on the host bus. Since VR4102/VR4111 accesses to the S1D13A05 may occur asynchronously to the display update, it is possible that contention may occur in accessing
 the S1D13A05 internal registers and/or display buffer. The WAIT# line resolves these
 contentions by forcing the host to wait until the resource arbitration is complete.
- The Bus Status (BS#) and Read/Write (RD/WR#) signals are not used in this implementation of the NEC VR4102/4111 interface using the Generic #2 Host Bus Interface.
 These pins must be tied high (connected to IO V_{DD}).

4 VR4102/VR4111 to S1D13A05 Interface

4.1 Hardware Description

The NEC VR4102/VR4111 microprocessor is specifically designed to support an external LCD controller by providing the internal address decoding and control signals necessary. By using the Generic # 2 Host Bus Interface, no glue logic is required to interface the S1D13A05 and the NEC VR4102/VR4111.

A pull-up resistor is attached to WAIT# to speed up its rise time when terminating a cycle.

BS# (bus start) and RD/WR# are not used by the Generic #2 Host Bus Interface and should be tied high (connected to IO $V_{\rm DD}$).

The following diagram shows a typical implementation of the VR4102/VR4111 to S1D13A05 interface.

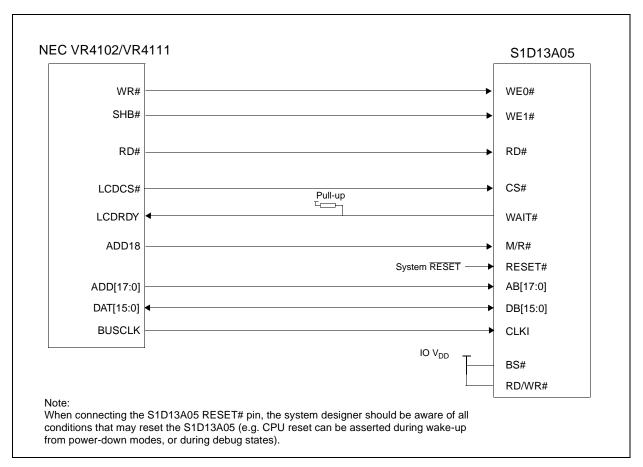


Figure 4-1: Typical Implementation of VR4102/VR4111 to S1D13A05 Interface

4.2 S1D13A05 Hardware Configuration

The S1D13A05 uses CNF6 through CNF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

The following table shows the configuration required for this implementation of a S1D13A05 to NEC VR4102/4111 interface.

Table 4-1: Summary of Power-On/Reset Options

S1D13A05	Power-Or	/Reset State							
Configuration Input	1 (connected to IO V _{DD}) 0 (connected to V _{SS})								
CNF4.	Select host bus interface as follows:								
CNF[2:0]		est Bus							
	0 1 0 0 Ge	eneric #2, Little Endian							
CNF3	Reserved. Must be set to 1.								
CNF5	WAIT# is active high	WAIT# is active low							
CNF6	CLKI to BCLK divide ratio 2:1	CLKI to BCLK divide ratio 1:1							

configuration for NEC VR4102/VR4111 microprocessor

4.3 NEC VR4102/VR4111 Configuration

The NEC VR4102/4111 provides the internal address decoding necessary to map an external LCD controller. Physical address 0A00_0000h to 0AFF_FFFFh (16M bytes) is reserved for an external LCD controller by the NEC VR4102/4111.

The S1D13A05 is a memory mapped device. The S1D13A05 uses two 256K byte blocks which are selected using ADD18 from the NEC VR4102/4111 (ADD18 is connected to the S1D13A05 M/R# pin). The internal registers occupy the first 256K byte block and the 256K byte display buffer occupies the second 256K byte block.

The starting address of the S1D13A05 internal registers is located at 0A00_0000h and the starting address of the display buffer is located at 0A04_0000h. These blocks are aliased over the entire 16M byte address space.

Note

If aliasing is not desirable, the upper addresses must be fully decoded.

The NEC VR4102/VR4111 has a 16-bit internal register named BCUCNTREG2 located at 0B00_0002h. It must be set to the value of 0001h which indicates that LCD controller accesses use a non-inverting data bus.

The 16-bit internal register named BCUCNTREG1 (located at 0B00_0000h) must have bit D[13] (ISA/LCD bit) set to 0. This reserves 16M bytes (from 0A00_0000h to 0AFF_FFFFh) for use by the LCD controller and not as ISA bus memory space.

5 Software

Test utilities and display drivers are available for the S1D13A05. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13A05CFG (see document number X40A-B-001-xx), or by directly modifying the source. The display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13A05 test utilities and display drivers are available from your sales support contact (see Section 7, "Sales and Technical Support") or www.erd.epson.com.

6 References

6.1 Documents

- NEC Electronics Inc., VR4102/VR4111 64/32-bit Microprocessor Preliminary User's Manual.
- Epson Research and Development, Inc., *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx.
- Epson Research and Development, Inc., *S1D13A05 Programming Notes and Examples*, document number X40A-G-003-xx.

6.2 Document Sources

- NEC Electronics Inc. Website: www.necel.com.
- Epson Research and Development Website: www.erd.epson.com.

7 Sales and Technical Support

7.1 EPSON LCD/USB Companion Chips (S1D13A05)

Seiko Epson Corporation **Electronic Devices Marketing Division** 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346 http://www.epson.com.hk/

http://www.epson.co.jp/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

7.2 NEC Electronics Inc.

NEC Electronics Inc. (U.S.A.)

Corporate Headquarters 2880 Scott Blvd. Santa Clara, CA 95050-8062, USA Tel: (800) 366-9782

Fax: (800) 729-9288 http://www.necel.com/

S1D13A05 LCD/USB Companion Chip

Interfacing to the NEC VR4181A™ Microprocessor

Document Number: X40A-G-008-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All Trademarks are the property of their respective owners.

Table of Contents

1	Intro	duct	io	n.	•				•	•	-		•			•	•	•	•	•	-	 •	•	•	 •	•		 •	. 7
2	Inter	rfacin	ıg	to	th	e N	١E	C	VF	4 ′	18	1A																	. 8
	2.1	The	NE	EC	VF	1 41	181	lΑ	Sy	ste	m	Bu	ıs																. 8
	2	2.1.1	C)ve	rvi	ew	7																						. 8
	2	2.1.2	L	CI) N	1eı	mo	ory	Ac	ce	SS	Sig	gna	ıls															. 9
3	S1D	13A0	5 I	Но	st	Вι	JS	In	ter	fa	ce																		10
	3.1	Host	В	us]	[nt	erf	асе	e P	in]	Ma	ıpp	oing	3																10
	3.2	Host	В	us]	[nt	erf	асе	e S	ign	als	S																		11
4	VR4	181A	to	S	1D	13	3A	05	In	te	rfa	ıce	٠.																12
	4.1	Hard	lwa	are	Dε	esc	rip	tio	n																				12
	4.2	S1D	13.	A 0	5 F	Iar	dw	var	e C	on	fig	gura	ati	on															13
	4.3	NEC	V	R4	18	1A	C	on	fig	ura	itic	on																	14
5	Soft	ware																											15
6	Refe	erenc	es																										16
	6.1	Docu																											
	6.2	Docu																											
7	Sale	s and	T t	ec	hr	nic	al	Sı	Jp	00	rt																		17
	7.1	EPS																											
	7.2	NEC	E	lec	tro	nic	s I	[nc		_				_															17

List of Tables

Table 3-1:	Host Bus Interface Pin Mapping
Table 4-1:	Summary of Power-On/Reset Options
	List of Figures
	List of Figures
Figure 4-1:	Typical Implementation of VR4181A to S1D13A05 Interface

1 Introduction

This application note describes the hardware and software environment required to interface the S1D13A05 LCD/USB Companion Chip and the NEC VR4181A microprocessor. The NEC VR4181A microprocessor is specifically designed to support an external LCD controller.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the NEC VR4181A

2.1 The NEC VR4181A System Bus

The VR-Series family of microprocessors features a high-speed synchronous system bus typical of modern microprocessors. Designed with external LCD controller support and Windows® CE based embedded consumer applications in mind, the VR4181A offers a highly integrated solution for portable systems. This section is an overview of the operation of the CPU bus to establish interface requirements.

2.1.1 Overview

The NEC VR4181A is designed around the RISC architecture developed by MIPS. This microprocessor is designed around the 100MHz VR4110 CPU core which supports the MIPS III and MIPS16 instruction sets. The CPU communicates with external devices via an ISA interface.

While the VR4181A has an embedded LCD controller, this internal controller can be disabled to provide direct support for an external LCD controller through its external ISA bus. A 64 to 512K byte block of memory is assigned to the external LCD controller with a dedicated chip select signal (LCDCS#). Word or byte accesses are controlled by the system high byte signal (#UBE).

2.1.2 LCD Memory Access Signals

The S1D13A05 requires an addressing range of 512K bytes. When the VR4181A external LCD controller chip select signal is programmed to a window of that size, the S1D13A05 resides in the VR4181A physical address range of 133C 0000h to 133F FFFFh. This range is part of the external ISA memory space.

The following signals are required to access an external LCD controller. All signals obey ISA signalling rules.

- A[16:0] is the address bus.
- #UBE is the high byte enable (active low).
- #LCDCS is the chip select for the S1D13A05 (active low).
- D[15:0] is the data bus.
- #MEMRD is the read command (active low).
- #MEMWR is the write command (active low).
- #MEMCS16 is the acknowledge for 16-bit peripheral capability (active low).
- IORDY is the ready signal from S1D13A05.
- SYSCLK is the pre-scalable bus clock (optional).

Once an address in the LCD block of memory is accessed, the LCD chip select (#LCDCS) is driven low. The read or write enable signals (#MEMRD or #MEMWR) are driven low for the appropriate cycle and IORDY is driven low by the S1D13A05 to insert wait states into the cycle. The high byte enable (UBE#) is driven low for 16-bit transfers and high for 8-bit transfers.

3 S1D13A05 Host Bus Interface

The S1D13A05 directly supports multiple processors. The S1D13A05 implements a 16-bit Generic #2 Host Bus Interface which is most suitable for direct connection to the NEC VR4181A microprocessor. Generic #2 supports an external Chip Select, shared Read/Write Enable for high byte, and individual Read/Write Enable for low byte.

The Generic #2 Host Bus Interface is selected by the S1D13A05 on the rising edge of RESET#. After RESET# is released, the bus interface signals assume their selected configuration. For details on the S1D13A05 configuration, see Section 4.2, "S1D13A05 Hardware Configuration" on page 13.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13A05 Pin Names	NEC VR4181A
AB[17:0]	A[17:0]
DB[15:0]	D[15:0]
WE1#	#UBE
CS#	#LCDCS
M/R#	A18
CLKI	SYSCLK
BS#	Connect to IO _{VDD} from the S1D13A05
RD/WR#	Connect to IO _{VDD} from the S1D13A05
RD#	#MEMRD
WE0#	#MEMWR
WAIT#	IORDY
RESET#	RESET#

Table 3-1: Host Bus Interface Pin Mapping

3.2 Host Bus Interface Signals

The interface requires the following signals.

- CLKI is a clock input which is required by the S1D13A05 Host Bus Interface as a source for its internal bus and memory clocks. This clock is typically driven by the host CPU system clock. For this example, SYSCLK from the NEC VR4181A is used for CLKI.
- The address inputs AB[17:0], and the data bus DB[15:0], connect directly to the NEC VR4181A address (A[17:0]) and data bus (D[15:0]), respectively. CNF4 must be set to select little endian mode.
- Chip Select (CS#) must be driven low by #LCDCS whenever the S1D13A05 is accessed by the VR4181A.
- M/R# (memory/register) selects between memory or register accesses. This signal is
 generated by the external address decode circuitry. For this example, M/R# is connected
 to address line A18, allowing system address A18 to select between memory or register
 accesses.
- WE1# connects to #UBE (the high byte enable signal from the NEC VR4181A) which in conjunction with address bit 0 allows byte steering of read and write operations.
- WE0# connects to #MEMWR (the write enable signal from the NEC VR4181A) and must be driven low when the NEC VR4181A is writing data to the S1D13A05.
- RD# connects to #MEMRD (the read enable signal from the NEC VR4181A) and must be driven low when the NEC VR4181A is reading data from the S1D13A05.
- WAIT# connects to IORDY and is a signal which is output from the S1D13A05 which
 indicates the NEC VR4181A must wait until data is ready (read cycle) or accepted
 (write cycle) on the host bus. Since VR4181A accesses to the S1D13A05 may occur
 asynchronously to the display update, it is possible that contention may occur in
 accessing the S1D13A05 internal registers and/or display buffer. The WAIT# line
 resolves these contentions by forcing the host to wait until the resource arbitration is
 complete.
- The Bus Status (BS#) and Read/Write (RD/WR#) signals are not used in this implementation of the NEC VR4181A interface using the Generic #2 Host Bus Interface. These pins must be tied high (connected to IO V_{DD}).

4 VR4181A to S1D13A05 Interface

4.1 Hardware Description

The NEC VR4181A microprocessor is specifically designed to support an external LCD controller by providing the internal address decoding and control signals necessary. By using the Generic # 2 Host Bus Interface, no glue logic is required to interface the S1D13A05 to the NEC VR4181A.

A pull-up resistor is attached to WAIT# to speed up its rise time when terminating a cycle.

#MEMCS16 of the NEC VR4181A is connected to #LCDCS to signal that the S1D13A05 is capable of 16-bit transfers.

BS# (bus start) and RD/WR# are not used by the Generic #2 Host Bus Interface and should be tied high (connected to IO $V_{\rm DD}$).

The diagram below shows a typical implementation of the VR4181A to S1D13A05 interface.

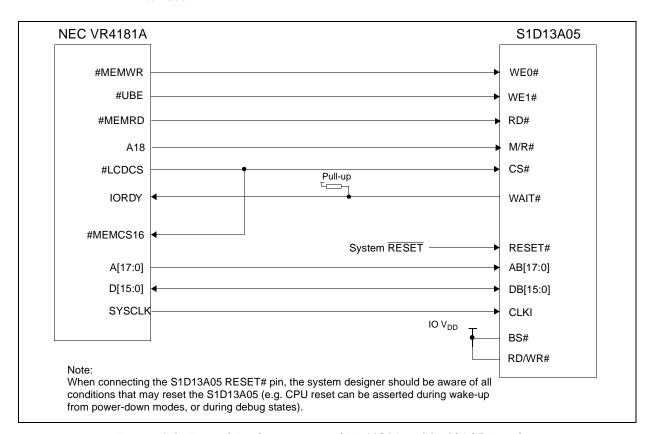


Figure 4-1: Typical Implementation of VR4181A to S1D13A05 Interface

4.2 S1D13A05 Hardware Configuration

The S1D13A05 uses CNF6 through CNF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

The following table shows the configuration required for this implementation of a S1D13A05 to NEC VR4181A interface.

Table 4-1: Summary of Power-On/Reset Options

S1D13A05	Power-On/Reset State			
Configuration Input	1 (connected to IO V _{DD})	0 (connected to V _{SS})		
CNE4	Select host bus interface as follows:			
CNF4, CNF[2:0]	CNF4 CNF2 CNF1 CNF0	lost Bus		
	0 1 0 0	Generic #2, Little Endian		
CNF3	Reserved. Must be set to 1.			
CNF5	WAIT# is active high	WAIT# is active low		
CNF6	CLKI to BCLK divide ratio 2:1	CLKI to BCLK divide ratio 1:1		

configuration for NEC VR4181A microprocessor

4.3 NEC VR4181A Configuration

The S1D13A05 is a memory mapped device. The S1D13A05 uses two 256K byte blocks which are selected using A18 from the NEC VR4181A (A18 is connected to the S1D13A05 M/R# pin). The internal registers occupy the first 256K byte block and the 256K byte display buffer occupies the second 256K byte block.

When the VR4181A embedded LCD controller is disabled, the external LCD controller chip select signal (#LCDCS) decodes either a 64K byte, 128K byte, 256K byte, or 512K byte memory block in the VR4181A external ISA memory. The S1D13A05 requires this block of memory to be set to 512K bytes. With this configuration, the S1D13A05 internal registers starting address is located at physical memory location 133C_0000h and the display buffer is located at memory location 1340_0000h.

The NEC VR4181A must be configured through its internal registers to map the S1D13A05 to the external LCD controller space. The following register values must be set.

- Register LCDGPMD at address 0B00_032Eh must be set as follows.
 - Bit 7 must be set to 1 to disable the internal LCD controller and enable the external LCD controller interface. Disabling the internal LCD controller also maps pin SHCLK to #LCDCS and pin LOCLK to #MEMCS16.
 - Bits [1:0] must be set to 11b to reserve 512Kbytes of memory address range, 133C_0000h to 133F_FFFFh for the external LCD controller.
- Register GPMD2REG at address 0B00_0304h must be set as follows.
 - Bits [9:8] (GP20MD[1:0]) must be set to 11b to map pin GPIO20 to #UBE.
 - Bits [5:4] (GP18MD[1:0]) must be set to 01b to map pin GPIO18 to IORDY.

5 Software

Test utilities and display drivers are available for the S1D13A05. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13A05CFG (see document number X40A-B-001-xx), or by directly modifying the source. The display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13A05 test utilities and display drivers are available from your sales support contact (see Section 7, "Sales and Technical Support") or www.erd.epson.com.

6 References

6.1 Documents

- NEC Electronics Inc., NEC VR4181A Target Specification, Revision 0.5, 9/11/98
- Epson Research and Development, Inc., *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx.
- Epson Research and Development, Inc., *S1D13A05 Programming Notes and Examples*, document number X40A-G-003-xx.

6.2 Document Sources

- NEC Electronics Inc.Website: www.necel.com.
- Epson Research and Development Website: www.erd.epson.com.

7 Sales and Technical Support

7.1 EPSON LCD/USB Companion Chips (S1D13A05)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346 http://www.epson.com.hk/

http://www.epson.co.jp/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

7.2 NEC Electronics Inc.

NEC Electronics Inc. (U.S.A.)

Corporate Headquarters 2880 Scott Blvd. Santa Clara, CA 95050-8062, USA Tel: (800) 366-9782

Fax: (800) 729-9288 http://www.necel.com/ THIS PAGE LEFT BLANK

S1D13A05 LCD/USB Companion Chip

Interfacing to the Motorola MPC82x Microprocessor

Document Number: X40A-G-009-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All Trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

1	intro	duction
2	Inter	facing to the MPC82x 8
	2.1	The MPC8xx System Bus
	2.2	MPC8xx Bus Overview
	2	2.2.1 Normal (Non-Burst) Bus Transactions
	2	2.2.2 Burst Cycles
	2.3	Memory Controller Module
	2	2.3.1 General-Purpose Chip Select Module (GPCM)
	2	2.3.2 User-Programmable Machine (UPM)
3	S1D	13A05 Host Bus Interface
	3.1	Host Bus Interface Pin Mapping
	3.2	Host Bus Interface Signals
4	MPC	82x to S1D13A05 Interface
	4.1	Hardware Description
	4.2	MPC821ADS Evaluation Board Hardware Connections
	4.3	S1D13A05 Hardware Configuration
	4.4	Register/Memory Mapping
	4.5	MPC82x Chip Select Configuration
	4.6	Test Software
5	Soft	ware
6	Refe	erences
	6.1	Documents
	6.2	Document Sources
7	Sale	s and Technical Support
	7.1	EPSON LCD/USB Companion Chips (S1D13A05)
	7.2	Motorola MPC821 Processor

THIS PAGE LEFT BLANK

List of Tables

Table 3-1:	Host Bus Interface Pin Mapping	13
Table 4-1:	List of Connections from MPC821ADS to S1D13A05	16
Table 4-2.	Summary of Power-On/Reset Ontions	18

List of Figures

Figure 2-1:	Power PC Memory Read Cycle
Figure 2-2:	Power PC Memory Write Cycle
Figure 2-3:	GPCM Memory Devices Timing
Figure 4-1:	Typical Implementation of MPC82x to S1D13A05 Interface

THIS PAGE LEFT BLANK

1 Introduction

This application note describes the hardware and software environment required to interface the S1D13A05 LCD/USB Companion Chip and the Motorola MPC82x microprocessor.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the MPC82x

2.1 The MPC8xx System Bus

The MPC8xx family of processors feature a high-speed synchronous system bus typical of modern RISC microprocessors. This section provides an overview of the operation of the CPU bus in order to establish interface requirements.

2.2 MPC8xx Bus Overview

The MPC8xx microprocessor family uses a synchronous address and data bus. All IO is synchronous to a square-wave reference clock called MCLK (Master Clock). This clock runs at the machine cycle speed of the CPU core (typically 25 to 50 MHz). Most outputs from the processor change state on the rising edge of this clock. Similarly, most inputs to the processor are sampled on the rising edge.

Note

The external bus can run at one-half the CPU core speed using the clock control register. This is typically used when the CPU core is operated above 50 MHz.

The MPC821 can generate up to eight independent chip select outputs, each of which may be controlled by one of two types of timing generators: the General Purpose Chip Select Module (GPCM) or the User-Programmable Machine (UPM). Examples are given using the GPCM.

It should be noted that all Power PC microprocessors, including the MPC8xx family, use bit notation opposite from the convention used by most other microprocessor systems. Bit numbering for the MPC8xx always starts with zero as the most significant bit, and increments in value to the least-significant bit. For example, the most significant bits of the address bus and data bus are A0 and D0, while the least significant bits are A31 and D31.

The MPC8xx uses both a 32-bit address and data bus. A parity bit is supported for each of the four byte lanes on the data bus. Parity checking is done when data is read from external memory or peripherals, and generated by the MPC8xx bus controller on write cycles. All IO accesses are memory-mapped meaning there is no separate IO space in the Power PC architecture.

Support is provided for both on-chip (DMA controllers) and off-chip (other processors and peripheral controllers) bus masters. For further information on this topic, refer to Section 6, "References" on page 22.

The bus can support both normal and burst cycles. Burst memory cycles are used to fill on-chip cache memory, and for certain on-chip DMA operations. Normal cycles are used for all other data transfers.

2.2.1 Normal (Non-Burst) Bus Transactions

A data transfer is initiated by the bus master by placing the memory address on address lines A0 through A31 and driving \overline{TS} (Transfer Start) low for one clock cycle. Several control signals are also provided with the memory address:

- TSIZ[0:1] (Transfer Size) indicates whether the bus cycle is 8, 16, or 32-bit.
- RD/WR set high for read cycles and low for write cycles.
- AT[0:3] (Address Type Signals) provides more detail on the type of transfer being attempted.

When the peripheral device being accessed has completed the bus transfer, it asserts \overline{TA} (Transfer Acknowledge) for one clock cycle to complete the bus transaction. Once \overline{TA} has been asserted, the MPC821 will not start another bus cycle until \overline{TA} has been de-asserted. The minimum length of a bus transaction is two bus clocks.

Figure 2-1: "Power PC Memory Read Cycle" illustrates a typical memory read cycle on the Power PC system bus.

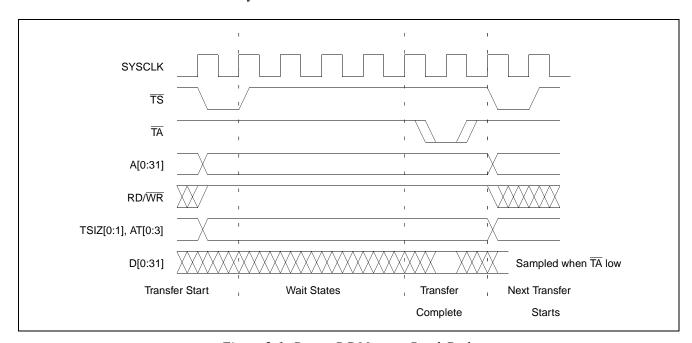


Figure 2-1: Power PC Memory Read Cycle

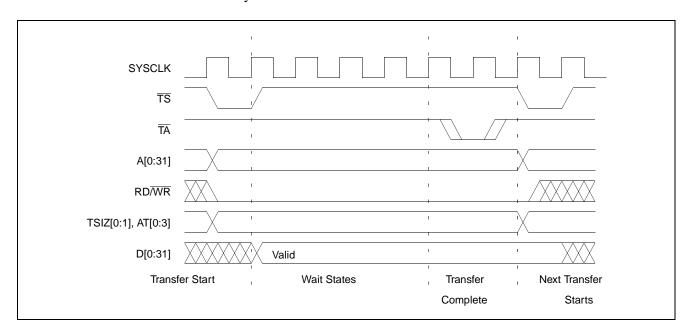


Figure 2-2: "Power PC Memory Write Cycle" illustrates a typical memory write cycle on the Power PC system bus.

Figure 2-2: Power PC Memory Write Cycle

If an error occurs, $\overline{\text{TEA}}$ (Transfer Error Acknowledge) is asserted and the bus cycle is aborted. For example, a peripheral device may assert $\overline{\text{TEA}}$ if a parity error is detected, or the MPC821 bus controller may assert $\overline{\text{TEA}}$ if no peripheral device responds at the addressed memory location within a bus time-out period.

For 32-bit transfers, all data lines (D[0:31]) are used and the two low-order address lines A30 and A31 are ignored. For 16-bit transfers, data lines D0 through D15 are used and address line A31 is ignored. For 8-bit transfers, data lines D0 through D7 are used and all address lines (A[0:31]) are used.

Note

This assumes that the Power PC core is operating in big endian mode (typically the case for embedded systems).

2.2.2 Burst Cycles

Burst memory cycles are used to fill on-chip cache memory and to carry out certain on-chip DMA operations. They are very similar to normal bus cycles with the following exceptions:

- Always 32-bit.
- Always attempt to transfer four 32-bit words sequentially.
- Always address longword-aligned memory (i.e. A30 and A31 are always 0:0).
- Do not increment address bits A28 and A29 between successive transfers; the addressed device must increment these address bits internally.

If a peripheral is not capable of supporting burst cycles, it can assert Burst Inhibit (\overline{BI}) simultaneously with \overline{TA} , and the processor reverts to normal bus cycles for the remaining data transfers.

Burst cycles are mainly intended to facilitate cache line fills from program or data memory. They are normally not used for transfers to/from IO peripheral devices such as the S1D13A05, therefore the interfaces described in this document do not attempt to support burst cycles.

2.3 Memory Controller Module

2.3.1 General-Purpose Chip Select Module (GPCM)

The General-Purpose Chip Select Module (GPCM) is used to control memory and peripheral devices which do not require special timing or address multiplexing. In addition to the chip select output, it can generate active-low Output Enable (\overline{OE}) and Write Enable (\overline{WE}) signals compatible with most memory and x86-style peripherals. The MPC821 bus controller also provides a Read/Write (RD/ \overline{WR}) signal which is compatible with most 68K peripherals.

The GPCM is controlled by the values programmed into the Base Register (BR) and Option Register (OR) of the respective chip select. The Option Register sets the base address, the block size of the chip select, and controls the following timing parameters:

- The ACS bit field allows the chip select assertion to be delayed with respect to the address bus valid, by 0, ¼, or ½ clock cycle.
- The CSNT bit causes chip select and \overline{WE} to be negated ½ clock cycle earlier than normal.
- The TRLX (relaxed timing) bit inserts an additional one clock delay between assertion of the address bus and chip select. This accommodates memory and peripherals with long setup times.
- The EHTR (Extended hold time) bit inserts an additional 1-clock delay on the first access to a chip select.
- Up to 15 wait states may be inserted, or the peripheral can terminate the bus cycle itself by asserting TA (Transfer Acknowledge).
- Any chip select may be programmed to assert \overline{BI} (Burst Inhibit) automatically when its memory space is addressed by the processor core.

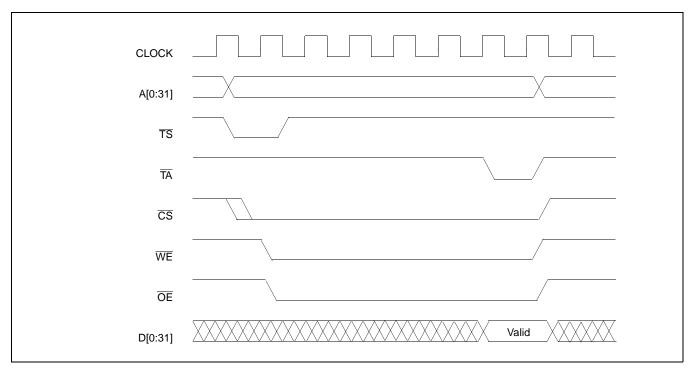


Figure 2-3: "GPCM Memory Devices Timing" illustrates a typical cycle for a memory mapped device using the GPCM of the Power PC.

Figure 2-3: GPCM Memory Devices Timing

2.3.2 User-Programmable Machine (UPM)

The UPM is typically used to control memory types, such as Dynamic RAMs, which have complex control or address multiplexing requirements. The UPM is a general purpose RAM-based pattern generator which can control address multiplexing, wait state generation, and five general-purpose output lines on the MPC821. Up to 64 pattern locations are available, each 32 bits wide. Separate patterns may be programmed for normal accesses, burst accesses, refresh (timer) events, and exception conditions. This flexibility allows almost any type of memory or peripheral device to be accommodated by the MPC821.

In this application note, the GPCM is used instead of the UPM, since the GPCM has enough flexibility to accommodate the S1D13A05 and it is desirable to leave the UPM free to handle other interfacing duties, such as EDO DRAM.

3 S1D13A05 Host Bus Interface

The S1D13A05 directly supports multiple processors. The S1D13A05 implements a 16-bit Generic #1 Host Bus Interface which is most suitable for direct connection to the Motorola MPC82x microprocessor. Generic #1 supports a Chip Select and an individual Read Enable/Write Enable for each byte.

The Generic #1 Host Bus Interface is selected by the S1D13A05 on the rising edge of RESET#. After RESET# is released, the bus interface signals assume their selected configuration. For details on the S1D13A05 configuration, see Section 4.3, "S1D13A05 Hardware Configuration" on page 18.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13A05 Pin Names	Motorola MPC82x
AB[17:0]	A[14:31]
DB[15:0]	D[0:15]
WE1#	WE0
CS#	CS4
M/R#	A13
CLKI	SYSCLK
BS#	Connect to IO _{VDD} from the S1D13A05
RD/WR#	OE (see note)
RD#	OE (see note)
WE0#	WE1
WAIT#	TA
RESET#	System RESET

Table 3-1: Host Bus Interface Pin Mapping

Note

The Motorola MPC82x chip select module only handles 16-bit read cycles. As the S1D13A05 uses the chip select module to generate CS#, only 16-bit read cycles are possible and both the high and low byte enables can be driven by the MPC82x signal \overline{OE} .

3.2 Host Bus Interface Signals

The Host Bus Interface requires the following signals.

- CLKI is a clock input which is required by the S1D13A05 Host Bus Interface as a source for its internal bus and memory clocks. This clock is typically driven by the host CPU system clock. For this example, SYSCLK from the Motorola MPC82x is used for CLKI.
- The address inputs AB[17:0], and the data bus DB[15:0], connect directly to the MPC82x address (A[14:31]) and data bus (D[0:15]), respectively. CNF4 must be set to select big endian mode.
- Chip Select (CS#) must be driven low by $\overline{\text{CS4}}$ whenever the S1D13A05 is accessed by the Motorola MPC82x.
- M/R# (memory/register) selects between memory or register accesses. This signal is generated by the external address decode circuitry. For this example, M/R# is connected to address line A13, allowing system address A13 to select between memory or register accesses.
- WE0# connects to WE1 (the low byte enable signal from the MPC82x) and must be driven low when the MPC82x is writing the low byte to the S1D13A05.
- WE1# connects to WE0 (the high byte enable signal from the MPC82x) and must be driven low when the MPC82x is writing the high byte to the S1D13A05.
- RD# and RD/WR# are read enables for the low-order and high-order bytes, respectively.
 Both signals are driven low by OE when the Motorola MPC82x is reading data from the S1D13A05.
- WAIT# connects to TA and is a signal which is output from the S1D13A05 which indicates the MPC82x must wait until data is ready (read cycle) or accepted (write cycle) on the host bus. Since MPC82x accesses to the S1D13A05 may occur asynchronously to the display update, it is possible that contention may occur in accessing the S1D13A05 internal registers and/or display buffer. The WAIT# line resolves these contentions by forcing the host to wait until the resource arbitration is complete.
- The Bus Status (BS#) signal is not used in this implementation of the MPC82x interface using the Generic #1 Host Bus Interface. This pin must be tied high (connected to IO V_{DD}).

4 MPC82x to S1D13A05 Interface

4.1 Hardware Description

The interface between the S1D13A05 and the MPC82x requires no external glue logic. The polarity of the WAIT# signal must be selected as active high by connecting CNF5 to IO V_{DD} (see Table 4-2:, "Summary of Power-On/Reset Options," on page 18).

BS# (bus start) is not used in this implementation and should be tied high (connected to IO V_{DD}).

The following diagram shows a typical implementation of the MPC82x to S1D13A05 interface.

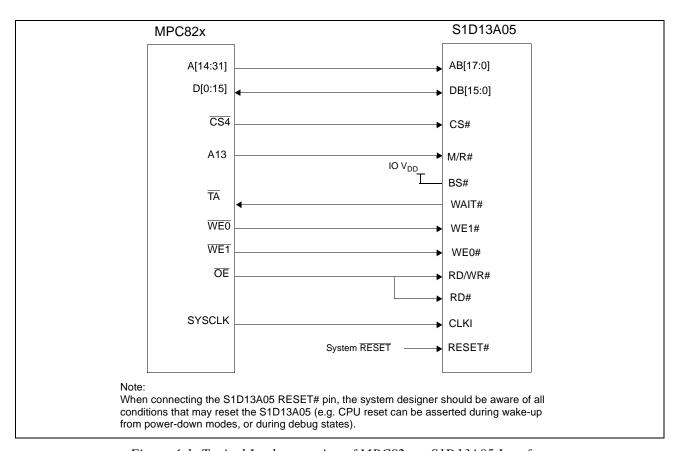


Figure 4-1: Typical Implementation of MPC82x to S1D13A05 Interface

Table 4-1:, "List of Connections from MPC821ADS to S1D13A05" on page 16 shows the connections between the pins and signals of the MPC82x and the S1D13A05.

Note

The interface was designed using a Motorola MPC821 Application Development System (ADS). The ADS board has 5 volt logic connected to the data bus, so the interface included two 74F245 octal buffers on D[0:15] between the ADS and the S1D13A05. In a true 3 volt system, no buffering is necessary.

4.2 MPC821ADS Evaluation Board Hardware Connections

The following table details the connections between the pins and signals of the MPC821 and the S1D13A05.

Table 4-1: List of Connections from MPC821ADS to S1D13A05

MPC821 Signal Name	MPC821ADS Connector and Pin Name	S1D13A05 Signal Name
2.0V (see note 1)	P9-D24	COREVDD
3.3V	P9-A22	IOVDD
A14 (see note 2)	P6-C20	AB17
A15 (see note 2)	P6-D20	AB16
A16 (see note 2)	P6-B24	AB15
A17 (see note 2)	P6-C24	AB14
A18 (see note 2)	P6-D23	AB13
A19 (see note 2)	P6-D22	AB12
A20 (see note 2)	P6-D19	AB11
A21 (see note 2)	P6-A19	AB10
A22 (see note 2)	P6-D28	AB9
A23 (see note 2)	P6-A28	AB8
A24 (see note 2)	P6-C27	AB7
A25 (see note 2)	P6-A26	AB6
A26 (see note 2)	P6-C26	AB5
A27 (see note 2)	P6-A25	AB4
A28 (see note 2)	P6-D26	AB3
A29 (see note 2)	P6-B25	AB2
A30 (see note 2)	P6-B19	AB1
A31 (see note 2)	P6-D17	AB0
D0 (see note 3)	P12-A9	D15
D1 (see note 3)	P12-C9	D14
D2 (see note 3)	P12-D9	D13
D3 (see note 3)	P12-A8	D12
D4 (see note 3)	P12-B8	D11
D5 (see note 3)	P12-D8	D10
D6 (see note 3)	P12-B7	D9
D7 (see note 3)	P12-C7	D8
D8 (see note 3)	P12-A15	D7
D9 (see note 3)	P12-C15	D6
D10 (see note 3)	P12-D15	D5
D11 (see note 3)	P12-A14	D4
D12 (see note 3)	P12-B14	D3
D13 (see note 3)	P12-D14	D2
D14 (see note 3)	P12-B13	D1
D15 (see note 3)	P12-C13	D0

Table 4-1: List of Connections from MPC821ADS to S1D13A05 (Continued)

MPC821 Signal Name	MPC821ADS Connector and Pin Name	S1D13A05 Signal Name
SRESET	P9-D15	RESET#
SYSCLK	P9-C2	CLKI
CS4	P6-D13	CS#
TA	P6-B6 to inverter enabled by CS#	WAIT#
WE0	P6-B15	WE1#
WE1	P6-A14	WE0#
OE	P6-B16	RD/WR#, RD#
A13	P6-C21	M/R#
GND	P12-A1, P12-B1, P12-A2, P12-B2, P12-A3, P12-B3, P12-A4, P12-B4, P12-A5, P12-B5, P12-A6, P12-B6, P12-A7	Vss

Note

- 1. The PCMCIA connector (P9) provides 2.0V on D[23:25] and can be used as the source for COREVDD. However, at 2.0V the S1D13A05 MCLK has a maximum frequency of 30MHz. To increase memory performance (MCLK maximum = 50MHz) an external 2.5V power supply must be connected to COREVDD.
- 2. The bit numbering of the Motorola MPC821 bus signals is reversed from the normal convention, e.g.: the most significant address bit is A0, the next is A1, A2, etc.
- 3. The bit numbering of the Motorola MPC821 data signals is reversed from the normal convention, e.g.: the most significant address bit is D0, the next is D1, D2, etc.

4.3 S1D13A05 Hardware Configuration

The S1D13A05 uses CNF6 through CNF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

The following table shows the configuration required for this implementation of a S1D13A05 to Motorola MPC82x microprocessor.

Table 4-2: Summary of Power-On/Reset Options

S1D13A05	Power-On/Reset State			
Configuration Input	1 (connected to IO V _{DD})	0 (connected to V _{SS})		
CNF4,	Select host bus interface as follows:			
CNF[2:0]	CNF4 CNF2 CNF1 CNF0 Ho	Host Bus		
5 · · · [= · · ·]	1 0 1 1 Ge	Generic #1, Big Endian		
CNF3	Reserved. Must be set to 1.			
CNF5	WAIT# is active high	WAIT# is active low		
CNF6	CLKI to BCLK divide ratio 2:1	CLKI to BCLK divide ratio 1:1		

configuration for Motorola MPC82x microprocessor

4.4 Register/Memory Mapping

The DRAM on the MPC821 ADS board extends from address 0 through 3F FFFFh, so the S1D13A05 is addressed starting at 40 0000h. The S1D13A05 uses two 256K byte blocks which are selected using A13 from the MPC821 (A13 is connected to the S1D13A05 M/R# pin). The internal registers occupy the first 256K byte block and the 256K byte display buffer occupies the second 256K byte block.

4.5 MPC82x Chip Select Configuration

Chip select 4 is used to control the S1D13A05. The following options are selected in the base address register (BR4).

- BA (0:16) = 0000 0000 0100 0000 0 set starting address of S1D13A05 to 40 0000h
- AT (0:2) = 0 ignore address type bits.
- PS (0:1) = 1:0 memory port size is 16 bits
- PARE = 0 disable parity checking
- WP = 0 disable write protect
- MS (0:1) = 0:0 select General Purpose Chip Select module to control this chip select
- V = 1 set valid bit to enable chip select

The following options were selected in the option register (OR4).

- AM (0:16) = 1111 1111 1100 0000 0 mask all but upper 10 address bits; S1D13A05 consumes 4M byte of address space
- ATM (0:2) = 0 ignore address type bits
- CSNT = 0 normal $\overline{CS}/\overline{WE}$ negation
- ACS $(0:1) = 1:1 \text{delay } \overline{\text{CS}}$ assertion by ½ clock cycle from address lines
- BI = 1 assert Burst Inhibit
- SCY (0:3) = 0 wait state selection; this field is ignored since external transfer acknowledge is used; see SETA below
- SETA = 1 the S1D13A05 generates an external transfer acknowledge using the WAIT# line
- TRLX = 0 normal timing
- EHTR = 0 normal timing

4.6 Test Software

The test software to exercise this interface is very simple. It configures chip select 4 (CS4) on the MPC82x to map the S1D13A05 to an unused 512K byte block of address space and loads the appropriate values into the option register for CS4. Then the software runs a tight loop reading the S1D13A05 Revision Code Register REG[00h]. This allows monitoring of the bus timing on a logic analyzer.

The following source code was entered into the memory of the MPC821ADS using the line-by-line assembler in MPC8BUG (the debugger provided with the ADS board). Once the program was executed on the ADS, a logic analyzer was used to verify operation of the interface hardware.

It is important to note that when the MPC821 comes out of reset, its on-chip caches and MMU are disabled. If the data cache is enabled, then the MMU must be set up so that the S1D13A05 memory block is tagged as non-cacheable, to ensure that accesses to the S1D13A05 occurs in proper order, and also to ensure that the MPC821 does not attempt to cache any data read from or written to the S1D13A05 or its display buffer.

The source code for this test routine is as follows:

BR4	equ	\$120	;	CS4 base register
OR4	equ	\$124	;	CS4 option register
MemStart	equ	\$44 0000	;	address of S1D13A05 display buffer
RevCodeReg	equ	\$40 0000	;	address of Revision Code Register
Start	mfspr	r1,IMMR	;	get base address of internal registers
	andis.	r1,r1,\$ffff	;	clear lower 16 bits to 0
	andis.	r2,r0,0	;	clear r2
	oris	r2,r2,MemStart	;	write base address
	ori	r2,r2,\$0801	;	port size 16 bits; select GPCM; enable
	stw	r2,BR4(r1)	;	write value to base register
	andis.	r2,r0,0	;	clear r2
	oris	r2,r2,\$ffc0	;	address mask - use upper 10 bits
	ori	r2,r2,\$0708	;	normal CS negation; delay CS ½ clock;
			;	inhibit burst
	stw	r2,OR4(r1)	;	write to option register
	andis.	r1,r0,0	;	clear r1
	oris	r1,r1,MemStart	;	point r1 to start of S1D13A05 mem space
Loop	lbz	r0,RevCodeReg(r1)	;	read revision code into r1
	b	Loop	;	branch forever

end

Note

MPC8BUG does not support comments or symbolic equates. These have been added for clarity only.

5 Software

Test utilities and display drivers are available for the S1D13A05. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13A05CFG (see document number X40A-B-001-xx), or by directly modifying the source. The display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13A05 test utilities and display drivers are available from your sales support contact (see Section 7, "Sales and Technical Support") or www.erd.epson.com.

6 References

6.1 Documents

- Motorola Inc., Power PC MPC821 Portable Systems Microprocessor User's Manual, Motorola Publication no. MPC821UM/; available on the Internet at http://www.mot.com/SPS/ADC/pps/_subpgs/_documentation/821/821UM.html.
- Epson Research and Development, Inc., *S1D13A05 Hardware Functional Specification*, Document Number X40A-A-001-xx.
- Epson Research and Development, Inc., *S1D13A05 Programming Notes and Examples*, Document Number X40A-G-003-xx.

6.2 Document Sources

- Motorola Inc. Literature Distribution Center: (800) 441-2447.
- Motorola Inc. Website: www.mot.com.
- Epson Research and Development Website: www.erd.epson.com.

7 Sales and Technical Support

7.1 EPSON LCD/USB Companion Chips (S1D13A05)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346 http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

7.2 Motorola MPC821 Processor

- Motorola Design Line, (800) 521-6274.
- Local Motorola sales office or authorized distributor.

THIS PAGE LEFT BLANK

S1D13A05 LCD/USB Companion Chip

Interfacing to the Motorola MCF5307 "ColdFire" Microprocessor

Document Number: X40A-G-010-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All Trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

1	Intro	oduct	tion	. 7			
2	Inte	rfacin	ng to the MCF5307	. 8			
	2.1 The MCF5307 System Bus						
	2	2.1.1	Overview	. 8			
	2	2.1.2	Normal (Non-Burst) Bus Transactions	. 8			
	2	2.1.3	Burst Cycles	. 9			
	2.2	Chip	o-Select Module	10			
3	S1D13A05 Host Bus Interface						
	3.1	Host	t Bus Interface Pin Mapping	11			
	3.2	Host	t Bus Interface Signals	12			
4	MCF5307 To S1D13A05 Interface						
	4.1		dware Description				
	4.2	S1D	13A05 Hardware Configuration	14			
	4.3	Regi	ister/Memory Mapping	15			
	4.4	MCF	F5307 Chip Select Configuration	15			
5	Soft	ware		16			
6	References						
Ū	6.1		uments				
	6.2		ument Sources				
7							
7			d Technical Support				
	7.1		ON LCD/USB Companion Chips (S1D13A05)				
	7.2	- IVIOto	orola MCF5307 Processor	- 18			

THIS PAGE LEFT BLANK

List of Tables

Table 3-1:	Host Bus Interface Pin Mapping
Table 4-1:	Summary of Power-On/Reset Options
	List of Figures
	List of Figures

 Figure 2-1:
 MCF5307 Memory Read Cycle
 9

 Figure 2-2:
 MCF5307 Memory Write Cycle
 9

 Figure 2-3:
 Chip Select Module Outputs Timing
 .10

 Figure 4-1:
 Typical Implementation of MCF5307 to S1D13A05 Interface
 .13

THIS PAGE LEFT BLANK

1 Introduction

This application note describes the hardware and software environment required to interface the S1D13A05 LCD/USB Companion Chip and the Motorola MCF5307 "Coldfire" Processor.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the MCF5307

2.1 The MCF5307 System Bus

The MCF5200/5300 family of processors feature a high-speed synchronous system bus typical of modern microprocessors. This section is an overview of the operation of the CPU bus in order to establish interface requirements.

2.1.1 Overview

The MCF5307 microprocessor family uses a synchronous address and data bus, very similar in architecture to the MC68040 and MPC8xx. All outputs and inputs are timed with respect to a square-wave reference clock called BCLK0 (Master Clock). This clock runs at a software-selectable divisor rate from the machine cycle speed of the CPU core (typically 20 to 33 MHz). Both the address and the data bus are 32 bits in width. All IO accesses are memory-mapped; there is no separate IO space in the Coldfire architecture.

The bus can support two types of cycles, normal and burst. Burst memory cycles are used to fill on-chip cache memories, and for certain on-chip DMA operations. Normal cycles are used for all other data transfers.

2.1.2 Normal (Non-Burst) Bus Transactions

A data transfer is initiated by the bus master by placing the memory address on address lines A31 through A0 and driving \overline{TS} (Transfer Start) low for one clock cycle. Several control signals are also provided with the memory address:

- SIZ[1:0] (Transfer Size) indicates whether the bus cycle is 8, 16, or 32-bit.
- R/\overline{W} set high for read cycles and low for write cycles.
- TT[1:0] (Transfer Type Signals) provides more detail on the type of transfer being attempted.
- TIP (Transfer In Progress) asserts whenever a bus cycle is active.

When the peripheral device being accessed has completed the bus transfer, it asserts \overline{TA} (Transfer Acknowledge) for one clock cycle to complete the bus transaction. Once \overline{TA} has been asserted, the MCF5307 will not start another bus cycle until \overline{TA} has been de-asserted. The minimum length of a bus transaction is two bus clocks.

Figure 2-1: "MCF5307 Memory Read Cycle," illustrates a typical memory read cycle on the MCF5307 system bus.

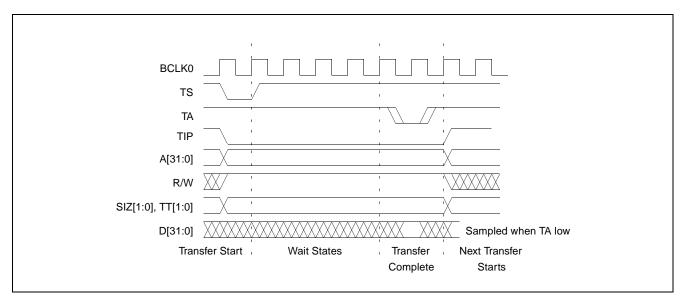


Figure 2-1: MCF5307 Memory Read Cycle

Figure 2-2: "MCF5307 Memory Write Cycle," illustrates a typical memory write cycle on the MCF5307 system bus.

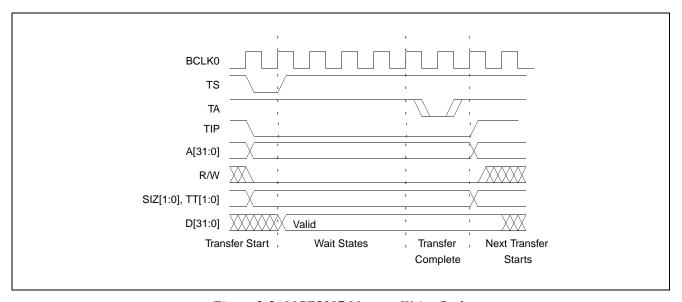


Figure 2-2: MCF5307 Memory Write Cycle

2.1.3 Burst Cycles

Burst cycles are very similar to normal cycles, except that they occur as a series of four back-to-back, 32-bit memory reads or writes. The TIP (Transfer In Progress) output is asserted continuously through the burst. Burst memory cycles are mainly intended to fill

caches from program or data memory. They are typically not used for transfers to or from IO peripheral devices such as the S1D13A05. The MCF5307 chip selects provide a mechanism to disable burst accesses for peripheral devices which are not burst capable.

2.2 Chip-Select Module

In addition to generating eight independent chip-select outputs, the MCF5307 Chip Select Module can generate active-low Output Enable (\overline{OE}) and Write Enable (\overline{BWE}) signals compatible with most memory and x86-style peripherals. The MCF5307 bus controller also provides a Read/Write ($\overline{R/W}$) signal which is compatible with most 68K peripherals.

Chip selects 0 and 1 can be programmed independently to respond to any base address and block size. Chip select 0 can be active immediately after reset, and is typically used to control a boot ROM. Chip select 1 is likewise typically used to control a large static or dynamic RAM block.

Chip selects 2 through 7 have fixed block sizes of 2M bytes each. Each has a unique, fixed offset from a common, programmable starting address. These chip selects are well-suited to typical IO addressing requirements.

Each chip select may be individually programmed for:

- port size (8/16/32-bit).
- up to 15 wait states or external acknowledge.
- address space type.
- burst or non-burst cycle support.
- write protect.

Figure 2-3: "Chip Select Module Outputs Timing" illustrates a typical cycle for a memory mapped device using the GPCM of the Power PC.

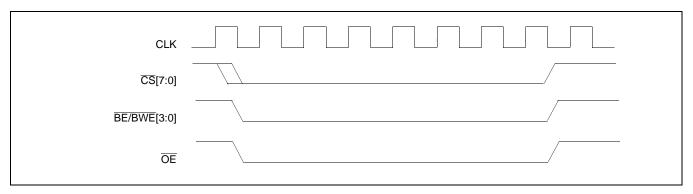


Figure 2-3: Chip Select Module Outputs Timing

3 S1D13A05 Host Bus Interface

The S1D13A05 directly supports multiple processors. The S1D13A05 implements a 16-bit Generic #1 Host Bus Interface which is most suitable for direct connection to the Motorola MFC5307 microprocessor. Generic #1 supports a Chip Select and an individual Read Enable/Write Enable for each byte.

The Generic #1 Host Bus Interface is selected by the S1D13A05 on the rising edge of RESET#. After RESET# is released, the bus interface signals assume their selected configuration. For details on the S1D13A05 configuration, see Section 4.2, "S1D13A05 Hardware Configuration" on page 14.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13A05 Pin Names **Motorola MCF5307** AB[17:0] A[17:0] DB[15:0] D[31:16] BWE₁ WE1# CS4 CS# M/R# A18 BCLK0 **CLKI** BS# Connect to IO_{VDD} from the S1D13A05 OE RD/WR# OE RD# **BWE0** WE0# WAIT# TA RESET# system RESET

Table 3-1: Host Bus Interface Pin Mapping

3.2 Host Bus Interface Signals

The Host Bus Interface requires the following signals.

- CLKI is a clock input which is required by the S1D13A05 Host Bus Interface as a source for its internal bus and memory clocks. This clock is typically driven by the host CPU system clock. For this example, BCLK0 from the Motorola MCF5307 is used for CLKI.
- The address inputs AB[17:0] connect directly to the MCF5307 address bus (A[17:0]).
- DB[7:0] connects D[23:16] (the MCF5307 low order byte). DB[15:8] connects to D[31:24] (the MCF5307 high order byte). CNF4 must be set to select big endian mode.
- Chip Select (CS#) must be driven low by CS4 whenever the S1D13A05 is accessed by the Motorola MCF5307.
- M/R# (memory/register) selects between memory or register accesses. This signal is generated by the external address decode circuitry. For this example, M/R# is connected to address line A18, allowing system address A18 to select between memory or register accesses.
- WE0# connects to BWE0 (the low byte enable signal from the MCF5307) and must be driven low when the MCF5307 is writing the low byte to the S1D13A05.
- WE1# connects to BWE1 (the high byte enable signal from the MCF5307) and must be driven low when the MCF5307 is writing the high byte to the S1D13A05.
- RD# and RD/WR# are read enables for the low-order and high-order bytes, respectively.
 Both signals are driven low by OE when the Motorola MCF5307 is reading data from
 the S1D13A05.
- WAIT# connects to TA and is a signal which is output from the S1D13A05 that indicates the host CPU must wait until data is ready (read cycle) or accepted (write cycle) on the host bus. Since host CPU accesses to the S1D13A05 may occur asynchronously to the display update, it is possible that contention may occur in accessing the S1D13A05 internal registers and/or refresh memory. The WAIT# line resolves these contentions by forcing the host to wait until the resource arbitration is complete. This signal is active low and may need to be inverted if the host CPU wait state signal is active high.
- The Bus Status (BS#) signal is not used in the bus interface for Generic #1 mode and must be tied high to IO V_{DD}.

4 MCF5307 To S1D13A05 Interface

4.1 Hardware Description

The interface between the S1D13A05 and the MCF5307 requires no external glue logic. The polarity of the WAIT# signal must be selected as active high by connecting CNF5 to IO V_{DD} (see Table 4-1:, "Summary of Power-On/Reset Options," on page 14).

The following diagram shows a typical implementation of the MCF5307 to S1D13A05 interface.

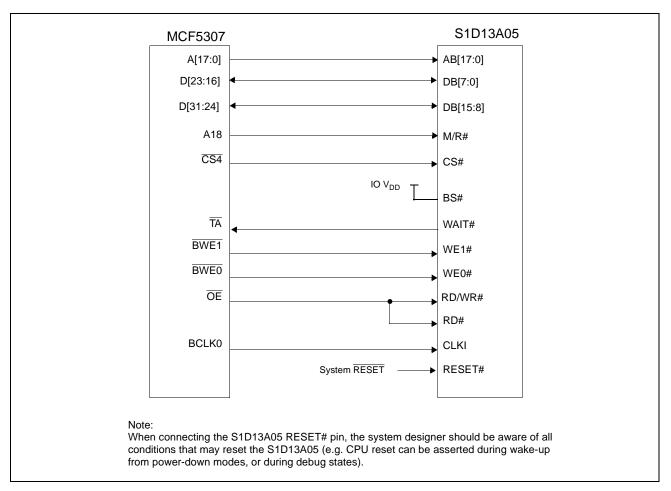


Figure 4-1: Typical Implementation of MCF5307 to S1D13A05 Interface

4.2 S1D13A05 Hardware Configuration

The S1D13A05 uses CNF6 through CNF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

The following table shows the configuration required for this implementation of a S1D13A05 to Motorola MFC5307 microprocessor.

Table 4-1: Summary of Power-On/Reset Options

S1D13A05	Power-On/Reset State		
Configuration Input	1 (connected to IO V _{DD})	0 (connected to V _{SS})	
CNF4,	Select host bus interface as follows:		
CNF[2:0]	CNF4 CNF2 CNF1 CNF0 Ho	est Bus	
J [2.0]	1 0 1 1 Ge	eneric #1, Big Endian	
CNF3	Reserved. Must be set to 1.		
CNF5	WAIT# is active high	WAIT# is active low	
CNF6	CLKI to BCLK divide ratio 2:1	CLKI to BCLK divide ratio 1:1	

configuration for Motorola MFC5307 microprocessor

4.3 Register/Memory Mapping

The S1D13A05 uses two 256K byte blocks which are selected using A18 from the MCF5307 (A18 is connected to the S1D13A05 M/R# pin). The internal registers occupy the first 256K byte block and the 256K byte display buffer occupies the second 256K byte block. These two blocks of memory are aliased over the entire 2M byte space.

Note

If aliasing is not desirable, the upper addresses must be fully decoded.

4.4 MCF5307 Chip Select Configuration

Chip Selects 0 and 1 have programmable block sizes from 64K bytes through 2G bytes. However, these chip selects would normally be needed to control system RAM and ROM. Therefore, one of the IO chip selects CS2 through CS7 is required to address the entire address space of the S1D13A05. These IO chip selects have a fixed, 2M byte block size. In the example interface, chip select 4 is used to control the S1D13A05. The CSBAR register should be set to the upper 8 bits of the desired base address.

The following options should be selected in the chip select mask registers (CSMR4/5).

- WP = 0 disable write protect
- AM = 0 enable alternate bus master access to the S1D13A05
- C/I = 1 disable CPU space access to the S1D13A05
- SC = 1 disable Supervisor Code space access to the S1D13A05
- SD = 0 enable Supervisor Data space access to the S1D13A05
- UC = 1 disable User Code space access to the S1D13A05
- UD = 0 enable User Data space access to the S1D13A05
- V = 1 global enable ("Valid") for the chip select

The following options should be selected in the chip select control registers (CSCR4/5).

- WS0-3 = 0 no internal wait state setting
- AA = 0 no automatic acknowledgment
- PS (1:0) = 1:0 memory port size is 16 bits
- BEM = 0 Byte enable/write enable active on writes only
- BSTR = 0 disable burst reads
- BSTW = 0 disable burst writes

5 Software

Test utilities and display drivers are available for the S1D13A05. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13A05CFG (see document number X40A-B-001-xx), or by directly modifying the source. The display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13A05 test utilities and display drivers are available from your sales support contact (see Section 7, "Sales and Technical Support") or www.erd.epson.com.

6 References

6.1 Documents

- Motorola Inc., *MCF5307 ColdFire*® *Integrated Microprocessor User's Manual*, Motorola Publication no. MCF5307UM; available on the Internet at http://www.mot.com/SPS/HPESD/prod/coldfire/5307UM.html.
- Epson Research and Development, Inc., *S1D13A05 Hardware Functional Specification*, document number X40A-A-001-xx.
- Epson Research and Development, Inc., *S1D13A05 Programming Notes and Examples*, document number X40A-G-003-xx.

6.2 Document Sources

- Motorola Inc.: Motorola Literature Distribution Center, (800) 441-2447.
- Motorola Inc. Website: www.mot.com.
- Epson Research and Development Website: www.erd.epson.com.

7 Sales and Technical Support

7.1 EPSON LCD/USB Companion Chips (S1D13A05)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1
Temasek Avenue #36-00
Millenia Tower
Singapore, 039192
Tel: 337-7911
Fax: 334-2716
http://www.epson.com.sg/

7.2 Motorola MCF5307 Processor

- Motorola Design Line, (800) 521-6274.
- Local Motorola sales office or authorized distributor.

S1D13A05 LCD/USB Companion Chip

Interfacing to the Motorola MC68VZ328 Dragonball Microprocessor

Document Number: X40A-G-012-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All Trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

1 Introduction							
2	Interfacing to the MC68VZ328						
	2.1 The MC68VZ328 System Bus						
	2.2 Chip-Select Module						
3	S1D13A05 Host Bus Interface						
	3.1 Host Bus Interface Pin Mapping						
	3.2 Host Bus Interface Signals						
4	MC68VZ328 to S1D13A05 Interface						
	4.1 Hardware Description						
	4.2 S1D13A05 Hardware Configuration						
	4.2.1 Register/Memory Mapping						
	4.2.2 MC68VZ328 Chip Select and Pin Configuration						
5	Software						
6	References						
	6.1 Documents						
	6.2 Document Sources						
7	Sales and Technical Support						
	7.1 EPSON LCD/USB Companion Chips (S1D13A05)						
	7.2 Motorola MC68VZ328 Processor						

THIS PAGE LEFT BLANK

List of Tables

Table 3-1:	Host Bus Interface Pin Mapping	9
Table 4-1:	Summary of Power-On/Reset Options	12
Table 4-2:	WS Bit Programming	13

List of Figures

THIS PAGE LEFT BLANK

1 Introduction

This application note describes the hardware and software environment required to interface the S1D13A05 LCD/USB Companion Chip and the Motorola MC68VZ328 Dragonball VZ microprocessor.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the MC68VZ328

2.1 The MC68VZ328 System Bus

The Motorola MC68VZ328 "Dragonball VZ" is the third generation in the Dragonball microprocessor family. The Dragonball VZ is an integrated controller designed for handheld products. It is based upon the FLX68000 microprocessor core and uses a 24-bit address bus and 16-bit data bus. The Dragonball VZ is faster than its predecessors and the DRAM controller now supports SDRAM. The bus interface consists of all the standard MC68000 bus interface signals except \overline{AS} , plus some new signals intended to simplify the interface to typical memory and peripheral devices. The 68000 signals are multiplexed with IrDA, SPI and LCD controller signals.

The MC68000 bus control signals are well documented in the Motorola user manuals, and are not be described here. The new signals are as follows.

- Output Enable (OE) is asserted when a read cycle is in progress. It is intended to connect
 to the output enable control signal of a typical static RAM, EPROM, or Flash EPROM
 device.
- Upper Write Enable and Lower Write Enable (UWE / LWE) are asserted during memory write cycles for the upper and lower bytes of the 16-bit data bus. They may be directly connected to the write enable inputs of a typical memory device.

2.2 Chip-Select Module

The MC68VZ328 can generate up to 8 chip select outputs which are organized into four groups (A through D).

Each chip select group has a common base address register and address mask register allowing the base address and block size of the entire group to be set. In addition, each chip select within a group has its own address compare and address mask register to activate the chip select for a subset of the group's address block. Each chip select may also be individually programmed to control an 8 or 16-bit device. Lastly, each chip select can either generate from 0 through 6 wait states internally, or allow the memory or peripheral device to terminate the cycle externally using the standard MC68000 DTACK signal.

Chip select groups A and B are used to control ROM, SRAM, and Flash memory devices and have a block size of 128K bytes to 16M bytes. Chip select A0 is active immediately after reset and is a global chip select so it is typically used to control a boot EPROM device. A0 ceases to decode globally once its chip select registers are programmed. Groups C and D are special in that they can also control DRAM interfaces. These last two groups have block size of 32K bytes to 4M bytes.

3 S1D13A05 Host Bus Interface

The S1D13A05 directly supports multiple processors. The S1D13A05 implements a Dragonball Host Bus Interface which directly supports the Motorola MC68VZ328 microprocessor.

The Dragonball Host Bus Interface is selected by the S1D13A05 on the rising edge of RESET#. After RESET# is released, the bus interface signals assume their selected configuration. For details on the S1D13A05 configuration, see Section 4.2, "S1D13A05 Hardware Configuration" on page 12.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13A05 Pin Names Motorola MC68VZ328 AB[17:0] A[17:0] DB[15:0] D[15:0] **UWE** WE1# CSx CS# External Decode M/R# **CLKI CLKO** BS# Connect to IO_{VDD} from the S1D13A05 Connect to IO_{VDD} from the S1D13A05 RD/WR# OE RD# LWE WE0# **DTACK** WAIT# System RESET RESET#

Table 3-1: Host Bus Interface Pin Mapping

3.2 Host Bus Interface Signals

The Host Bus Interface requires the following signals.

- CLKI is a clock input required by the S1D13A05 Host Bus Interface as a source for its internal bus and memory clocks. This clock is typically driven by the host CPU system clock. For this example, CLK0 from the Motorola MC68VZ328 is used for CLKI.
- The address inputs AB[17:0], and the data bus DB[15:0], connect directly to the MC68VZ328 address (A[17:0]) and data bus (D[15:0]), respectively. CNF4 must be set to one to select big endian mode.
- Chip Select (CS#) must be driven low by one of the Dragonball VZ chip select outputs from the chip select module whenever the S1D13A05 is accessed by the MC68VZ328.
- M/R# (memory/register) selects between memory or register accesses. This signal is
 generated by the external address decode circuitry. For this example, M/R# is connected
 to address line A18, allowing system address A18 to select between memory or register
 accesses.
- WE0# connects to \overline{LWE} (the low data byte write strobe enable of the MC68VZ328) and is asserted when valid data is written to the low byte of a 16-bit device.
- WE1# connects to UWE (the upper data byte write strobe enable of the MC68VZ328) and is asserted when valid data is written to the high byte of a 16-bit device.
- RD# connects to \overline{OE} (the read output enable of the MC68VZ328) and is asserted during a read cycle of the MC68VZ328 microprocessor.
- RD/WR# is not used for the Dragonball host bus interface and must be tied high to IO V_{DD}.
- WAIT# connects to DTACK and is a signal which is output from the S1D13A05 indicating the MC68VZ328 must wait until data is ready (read cycle) or accepted (write cycle) on the host bus. MC68VZ328 accesses to the S1D13A05 may occur asynchronously to the display update.
- BS# is not used for the Dragonball host bus interface and must be tied high to IO V_{DD}.

4 MC68VZ328 to S1D13A05 Interface

4.1 Hardware Description

The interface between the S1D13A05 and the MC68VZ328 does not requires any external glue logic. Chip select module B is used to provide the S1D13A05 with a chip select and A18 is used to select between memory and register accesses.

In this example, the \overline{DTACK} signal is made available for the S1D13A05. Alternately, the S1D13A05 can guarantee a maximum cycle length that the Dragonball VZ handles by inserting software wait states (see Section 4.2.2, "MC68VZ328 Chip Select and Pin Configuration" on page 13). A single resistor is used to speed up the rise time of the WAIT# (\overline{DTACK}) signal when terminating the bus cycle.

The following diagram shows a typical implementation of the MC68VZ328 to S1D13A05 using the Dragonball host bus interface. For further information on the Dragonball Host Bus interface and AC Timing, refer to the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

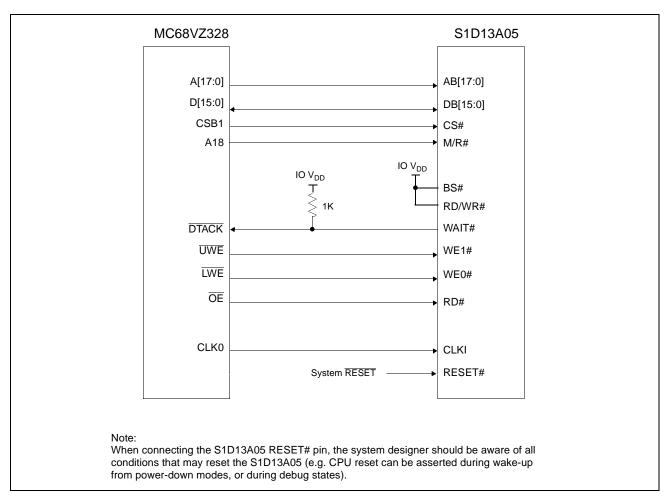


Figure 4-1: Typical Implementation of MC68VZ328 to S1D13A05 Interface

4.2 S1D13A05 Hardware Configuration

The S1D13A05 uses CNF6 through CNF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

The following table shows the configuration required for this implementation of a S1D13A05 to Motorola MC68VZ328 microprocessor.

Table 4-1: Summary of Power-On/Reset Options

S1D13A05	Power-On/Reset State		
Configuration Input	1 (connected to IO V _{DD})	0 (connected to V _{SS})	
CNF4,	Select host bus interface as follows:		
CNF[2:0]	CNF4 CNF2 CNF1 CNF0 Ho	est Bus	
5 · · · [= · · ·]	1 1 1 0 Dr	agonball Interface, Big Endian	
CNF3	Reserved. Must be set to 1.		
CNF5	WAIT# is active high	WAIT# is active low	
CNF6	CLKI to BCLK divide ratio 2:1	CLKI to BCLK divide ratio 1:1	
1			

configuration for Motorola MC68VZ328 microprocessor

4.2.1 Register/Memory Mapping

The S1D13A05 requires two 256K byte segments in memory for the display buffer and its internal registers. To accommodate this block size, it is preferable (but not required) to use one of the chip selects from groups A or B. Groups A and B can have a size range of 128K bytes to 16M bytes and groups C and D have a size range of 32K bytes to 16M bytes. Therefore, any chip select other than CSA0 would be suitable for the S1D13A05 interface.

In the example interface, chip select CSB1 controls the S1D13A05. A 512K byte address space is used by setting the SIZ bits of Chip Select Register B (FFFFF116h) to 512k bytes. The S1D13A05 internal registers occupy the first 256K byte block and the 256K byte display buffer is located in the second 256K byte block. A18 from the MC68VZ328 is used to select between these two 256K byte blocks.

4.2.2 MC68VZ328 Chip Select and Pin Configuration

The chip select used to map the S1D13A05 (in this example CSB1) must have its RO (Read Only) bit set to 0, its BSW (Bus Data Width) set to 1 for a 16-bit bus, and the WS (Wait states) bits should be set to 111b to allow the S1D13A05 to terminate bus cycles externally with \overline{DTACK} . The \overline{DTACK} pin function must be enabled with Register FFFFF433, Port G Select Register, bit 0.

If Chip Select Group B is used as the chip select module for the S1D13A05, SRAM timing must be enabled by setting the Chip Select Control Register 1 (FFFFF10Ah) SR16 bit = 0b.

Early cycle detection for static memory must be disabled by setting the Chip Select Control Register 2 (FFFF10Ch) ECDS bit = 0b.

If DTACK is not used, then the WS bits should be set to either 4, 6, 10, or 12 software wait states depending on the divide ratio between the S1D13A05 MCLK and BCLK. The WS bits should be set as follows.

 S1D13A05 MCLK to BCLK Divide Ratio
 WS Bits (wait states)

 MCLK = BCLK
 4

 MCLK = BCLK ÷ 2
 6

 MCLK = BCLK ÷ 3
 10

 MCLK = BCLK ÷ 4
 12

Table 4-2: WS Bit Programming

5 Software

Test utilities and display drivers are available for the S1D13A05. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13A05CFG (see document number X40A-B-001-xx), or by directly modifying the source. The display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13A05 test utilities and display drivers are available from your sales support contact (see Section 7, "Sales and Technical Support") or at www.erd.epson.com.

6 References

6.1 Documents

- Motorola Inc., MC68VZ328 DragonBall-VZ® Integrated Processor User's Manual, Motorola Publication no. MC683VZ28UM; available on the Internet at http://www.mot.com/SPS/WIRELESS/products/MC68VZ328.html.
- Epson Research and Development, Inc., *S1D13A05 Hardware Functional Specification*, Document Number X40A-A-001-xx.
- Epson Research and Development, Inc., *S1D13A05 Programming Notes and Examples*, Document Number X40A-G-003-xx.

6.2 Document Sources

- Motorola Inc. Literature Distribution Center: (800) 441-2447.
- Motorola Inc. Website: www.mot.com.
- Epson Research and Development Website: www.erd.epson.com.

7 Sales and Technical Support

7.1 EPSON LCD/USB Companion Chips (S1D13A05)

Japan

Seiko Epson Corporation Electronic Devices Marketing Division 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346 http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwar

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1
Temasek Avenue #36-00
Millenia Tower
Singapore, 039192
Tel: 337-7911
Fax: 334-2716
http://www.epson.com.sq/

7.2 Motorola MC68VZ328 Processor

- Motorola Design Line, (800) 521-6274.
- Local Motorola sales office or authorized distributor.

S1D13A05 LCD/USB Companion Chip

Interfacing to the Intel StrongARM SA-1110 Microprocessor

Document Number: X40A-G-013-01

Copyright © 2002 Epson Research and Development, Inc. All Rights Reserved.

Information in this document is subject to change without notice. You may download and use this document, but only for your own use in evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain material protected under U.S. and/or International Patent laws.

EPSON is a registered trademark of Seiko Epson Corporation. All Trademarks are the property of their respective owners.

THIS PAGE LEFT BLANK

Table of Contents

1	Intro	oduct	tion	. 7		
2	Inte	rfacin	ng to the StrongARM SA-1110 Bus	. 8		
	2.1	The	StrongARM SA-1110 System Bus	. 8		
	2	2.1.1	StrongARM SA-1110 Overview	. 8		
	2	2.1.2	Variable-Latency IO Access Overview	. 8		
	2	2.1.3	Variable-Latency IO Access Cycles	. 9		
3	S1D	S1D13A05 Host Bus Interface				
	3.1	Host	t Bus Interface Pin Mapping	11		
	3.2	Host	t Bus Interface Signal Descriptions	12		
4	Stro	StrongARM SA-1110 to S1D13A05 Interface				
	4.1	Hard	dware Description	13		
	4.2	S1D	013A05 Hardware Configuration	14		
	4.3	Stror	ngARM SA-1110 Register Configuration	15		
	4.4	Regi	ister/Memory Mapping	16		
5	Soft	ware		17		
6	References					
	6.1	Docu	ruments	18		
	6.2	Docu	nument Sources	18		
7	Sale	s and	d Technical Support	19		
	7.1	EPS	ON LCD/USB Companion Chips (S1D13A05)	19		
	7.2	Intel	1 StrongARM SA-1110 Processor	19		

THIS PAGE LEFT BLANK

List of Tables

Table 3-1:	Host Bus Interface Pin Mapping	1.
Table 4-1:	Summary of Power-On/Reset Options	14
Table 4-2:	RDFx Parameter Value versus CPU Maximum Frequency	15

List of Figures

Figure 2-1:	SA-1110 Variable-Latency IO Read Cycle	9
Figure 2-2:	SA-1110 Variable-Latency IO Write Cycle	10
Figure 4-1:	Typical Implementation of SA-1110 to S1D13A05 Interface	13

THIS PAGE LEFT BLANK

1 Introduction

This application note describes the hardware and software environment required to provide an interface between the S1D13A05 LCD/USB Companion Chip and the Intel StrongARM SA-1110 Microprocessor.

The designs described in this document are presented only as examples of how such interfaces might be implemented. This application note is updated as appropriate. Please check the Epson Research and Development website at www.erd.epson.com for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

2 Interfacing to the StrongARM SA-1110 Bus

2.1 The StrongARM SA-1110 System Bus

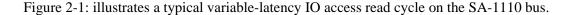
The StrongARM SA-1110 microprocessor is a highly integrated communications microprocessor that incorporates a 32-bit StrongARM RISC processor core. The SA-1110 is ideally suited to interface to the S1D13A05 LCD controller and provides a high performance, power efficient solution for embedded systems.

2.1.1 StrongARM SA-1110 Overview

The SA-1110 system bus can access both variable-latency IO and memory devices. The SA-1110 uses a 26-bit address bus and a 32-bit data bus which can be used to access 16-bit devices. A chip select module with six chip select signals (each accessing 64M bytes of memory) allows selection of external devices. Only chip selects 3 through 5 (nCS[5:3]) may be used to select variable-latency devices which use RDY to extend access cycles. These chip selects are individually programmed in the SA-1110 memory configuration registers and can be configured for either a 16 or 32-bit data bus.

Byte steering is implemented using the four signals nCAS[3:0]. Each signal selects a byte on the 32-bit data bus. For example, nCAS0 selects bits D[7:0] and nCAS3 selects bits D[31:24]. For a 16-bit data bus, only nCAS[1:0] are used with nCAS0 selecting the low byte and nCAS1 selecting the high byte. The SA-1110 can be configured to support little or big endian mode.

2.1.2 Variable-Latency IO Access Overview


A data transfer is initiated when a memory address is placed on the SA-1110 system bus **and** a chip select signal (nCS[5:3]) is driven low. If all byte enable signals (nCAS[3:0]) are driven low, then a 32-bit transfer takes place. If only nCAS[1:0] are driven low, then a word transfer takes place through a 16-bit bus interface. If only one byte enable is driven low, then a byte transfer takes place on the respective data lines.

During a read cycle, the output enable signal (nOE) is driven low. A write cycle is specified by driving nOE high and driving the write enable signal (nWE) low. The cycle can be lengthened by driving RDY high for the time needed to complete the cycle.

2.1.3 Variable-Latency IO Access Cycles

The first nOE assertion occurs two memory cycles after the assertion of chip select (nCS3, nCS4, or nCS5). Two memory cycles prior to the end of minimum nOE or nWE assertion (RDF+1 memory cycles), the SA-1110 starts sampling the data ready input (RDY). Samples are taken every half memory cycle until **three consecutive samples** (at the rising edge, falling edge, and following rising edge of the memory clock) indicate that the IO device is ready for data transfer. Read data is latched one-half memory cycle after the third successful sample (on falling edge). Then nOE or nWE is deasserted on the next rising edge and the address may change on the subsequent falling edge. Prior to a subsequent data cycle, nOE or nWE remains deasserted for RDN+1 memory cycles. The chip select and byte selects (nCAS[1:0] for 16-bit data transfers), remain asserted for one memory cycle after the final nOE or nWE deassertion of the burst.

The SA-1110 is capable of burst cycles during which the chip select remains low while the read or write command is asserted, precharged and reasserted repeatedly.

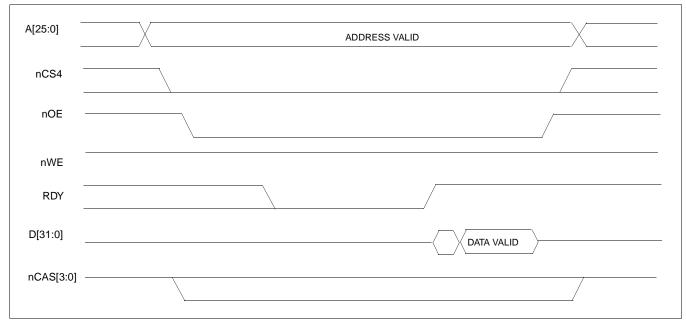


Figure 2-1: SA-1110 Variable-Latency IO Read Cycle

Figure 2-2: illustrates a typical variable-latency IO access write cycle on the SA-1110 bus.

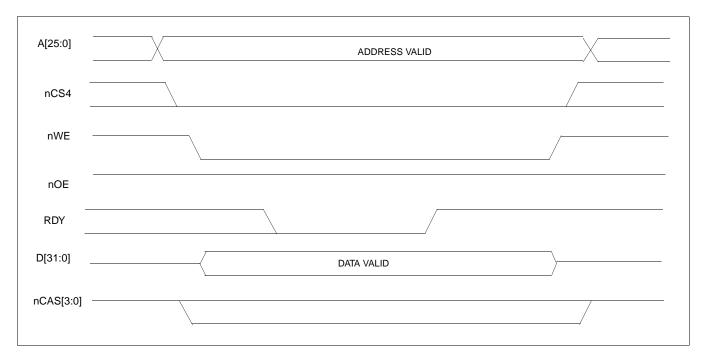


Figure 2-2: SA-1110 Variable-Latency IO Write Cycle

3 S1D13A05 Host Bus Interface

The S1D13A05 directly supports multiple processors. The S1D13A05 implements a 16-bit Generic #2 Host Bus Interface which is most suitable for direct connection to the SA-1110.

The Generic #2 Host Bus Interface is selected by the S1D13A05 on the rising edge of RESET#. After releasing reset the bus interface signals assume their selected configuration. For details on S1D13A05 configuration, see Section 4.2, "S1D13A05 Hardware Configuration" on page 14.

3.1 Host Bus Interface Pin Mapping

The following table shows the functions of each Host Bus Interface signal.

S1D13A05 Pin Name **SA-1110** AB[17:0] A[17:0] DB[15:0] D[15:0] WE1# nCAS1 M/R# A18 CS# nCS4 **CLKI** SDCLK2 BS# Connect to IO_{VDD} from the S1D13A05 RD/WR# Connect to IO_{VDD} from the S1D13A05 RD# nOE WE0# nWE WAIT# **RDY** RESET# system RESET

Table 3-1: Host Bus Interface Pin Mapping

3.2 Host Bus Interface Signal Descriptions

The S1D13A05 Generic #2 Host Bus Interface requires the following signals.

- CLKI is a clock input which is required by the S1D13A05 Host Bus Interface as a source for its internal bus and memory clocks. This clock is typically driven by the host CPU system clock. For this example, it is driven by one of the SA-1110 signals SDCLK1 or SDCLK2 (The example implementation in this document uses SDCLK2). For further information, see Section 4.3, "StrongARM SA-1110 Register Configuration" on page 15.
- The address inputs AB[17:0], and the data bus DB[15:0], connect directly to the SA-1110 address bus (A[17:0]) and data bus (D[15:0]), respectively. CNF4 must be set to select little endian mode.
- M/R# (memory/register) selects between memory or register accesses. This signal is generated by the external address decode circuitry. For this example, M/R# is connected to address line A18, allowing system address A18 to select between memory or register accesses.
- Chip Select (CS#) must be driven low by nCSx (where x is the SA-1110 chip select used) whenever the S1D13A05 is accessed by the SA-1110.
- WE1# connects to nCAS1 (the high byte enable signal from the SA-1110) which in conjunction with address bit 0 allows byte steering of read and write operations.
- WE0# connects to nWE (the write enable signal from the SA-1110) and must be driven low when the SA-1110 is writing data to the S1D13A05.
- RD# connects to nOE (the read enable signal from the SA-1110) and must be driven low when the SA-1110 is reading data from the S1D13A05.
- WAIT# connects to RDY and is a signal output from the S1D13A05 that indicates the SA-1110 must wait until data is ready (read cycle) or accepted (write cycle) on the host bus. Since SA-1110 accesses to the S1D13A05 may occur asynchronously to the display update, it is possible that contention may occur in accessing the S1D13A05 internal registers and/or display buffer. The WAIT# line resolves these contentions by forcing the host to wait until the resource arbitration is complete.
- The Bus Start (BS#) and RD/WR# signals are not used for this Host Bus Interface and should be tied high (connected to IOV_{DD}).
- The RESET# (active low) input of the S1D13A05 may be connected to the system RESET.

4 StrongARM SA-1110 to S1D13A05 Interface

4.1 Hardware Description

The SA-1110 microprocessor provides a variable latency I/O interface that can be used to support an external LCD controller. By using the Generic # 2 Host Bus Interface, no glue logic is required to interface the S1D13A05 and the SA-1110.

A pull-up resistor is attached to WAIT# to speed up its rise time when terminating a cycle.

BS# (bus start) and RD/WR# are not used by the Generic #2 Host Bus Interface and should be tied high (connected to IO $V_{\rm DD}$).

The following diagram shows a typical implementation of the SA-1110 to S1D13A05 interface.

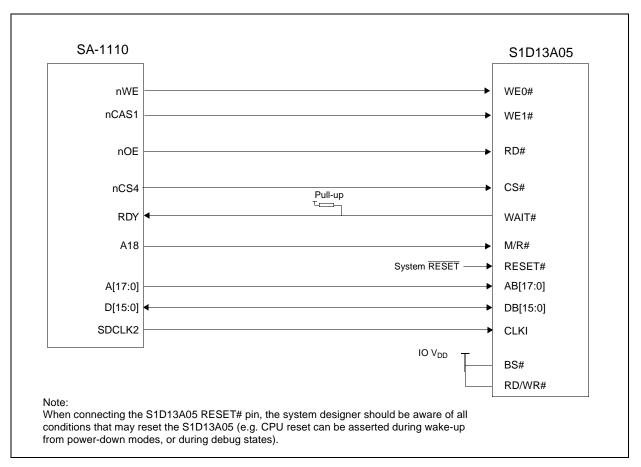


Figure 4-1: Typical Implementation of SA-1110 to S1D13A05 Interface

4.2 S1D13A05 Hardware Configuration

The S1D13A05 uses CNF6 through CNF0 to allow selection of the bus mode and other configuration data on the rising edge of RESET#. For details on configuration, refer to the S1D13A05 Hardware Functional Specification, document number X40A-A-001-xx.

The following table shows the configuration required for this implementation of a S1D13A05 to SA-1110 interface.

Table 4-1: Summary of Power-On/Reset Options

S1D13A05	Power-On/Reset State		
Configuration Input	1 (connected to IO V _{DD})	0 (connected to V _{SS})	
CNF4,	Select host bus interface as follows:		
CNF[2:0]	CNF4 CNF2 CNF1 CNF0 H	ost Bus	
	0 1 0 0 G	eneric #2, Little Endian	
CNF3	NF3 Reserved. Must be set to 1.		
CNF5	WAIT# is active high	WAIT# is active low	
CNF6	CLKI to BCLK divide ratio 2:1	CLKI to BCLK divide ratio 1:1	

configuration for SA-1110 microprocessor

4.3 StrongARM SA-1110 Register Configuration

The SA-1110 requires configuration of several of its internal registers to interface to the S1D13A05 Generic #2 Host Bus Interface.

• The Static Memory Control Registers (MSC[2:0]) are read/write registers containing control bits for configuring static memory or variable-latency IO devices. These registers correspond to chip select pairs nCS[5:4], nCS[3:2], and nCS[1:0] respectively. Each of the three registers contains two identical CNFG fields, one for each chip select within the pair. Since only nCS[5:3] controls variable-latency IO devices, MSC2 and MSC1 should be programmed based on the chip select used.

Parameter RTx[1:0] should be set to 01b (selects variable-latency IO mode).

Parameter RBWx should be set to 1 (selects 16-bit bus width).

Parameter RDFx[4:0] should be set according to the maximum desired CPU frequency as indicated in the table below.

Table 4-2: RDFx Parameter Value versus CPU Maximum Frequency

CPU Frequency (MHz)	RDFx
57.3 - 85.9	1
88.5 - 143.2	2
147.5 - 200.5	3
206.4 - 221.2	4

Parameter RDNx[4:0] should be set to 0 (minimum command precharge time).

Parameter RRRx[2:0] should be set to 0 (minimum nCSx precharge time).

- The S1D13A05 endian mode is set to little endian. To program the SA-1110 for little endian, set bit 7 of the control register (register 1) to 0.
- The CLKI signal input to the S1D13A05 from one of the SDCLK[2:1] pins is a derivative of the SA-1110 internal processor speed (either divide by 2 or 4). The S1D13A05 Generic #2 Host Bus Interface has a maximum BCLK of 50MHz. Therefore, if the processor clock is higher than 100MHz, either divide the BCLK input using the S1D13A05 configuration pin CNF6 (see Table 4-1: "Summary of Power-On/Reset Options") or set SDCLK1/SDCLK2 to CPU clock divided by four using the DRAM Refresh Control Register (MDREFR bit 26 = 1 for SDCLK2, MDREFR bit 22 = 1 for SDCLK1).

4.4 Register/Memory Mapping

The S1D13A05 is a memory-mapped device. The SA-1110 uses the memory assigned to a chip select (nCS4 in this example) to map the S1D13A05 internal registers and display buffer. The S1D13A05 uses two 256K byte blocks which are selected using A18 from the SA-1110 (A18 is connected to the S1D13A05 M/R# pin). The internal registers occupy the first 256K byte block and the 256K byte display buffer occupies the second 256K byte block.

Each variable-latency IO chip select is assigned 128M Bytes of address space. Therefore; if nCS4 is used the S1D13A05 registers will be located at 4000 0000h and the display buffer will be located at 4004 0000h. These blocks are aliased over the entire 128M byte address space.

Note

If aliasing is not desirable, the upper addresses must be fully decoded.

5 Software

Test utilities and display drivers are available for the S1D13A05. Full source code is available for both the test utilities and the drivers.

The test utilities are configurable for different panel types using a program called 13A05CFG (see document number X40A-B-001-xx), or by directly modifying the source. The display drivers can be customized by the OEM for different panel types, resolutions and color depths only by modifying the source.

The S1D13A05 test utilities and display drivers are available from your sales support contact (see Section 7, "Sales and Technical Support") or www.erd.epson.com.

6 References

6.1 Documents

- Intel Corporation, *StrongARM® SA-1110 Microprocessor Advanced Developer's Manual*, Order Number 278240-001.
- Epson Research and Development, Inc., S1D13A05 Hardware Functional Specification, Document Number X40A-A-001-xx.
- Epson Research and Development, Inc., *S1D13A05 Programming Notes and Examples*, Document Number X40A-G-003-xx.

6.2 Document Sources

- Intel Developers Website: http://developer.intel.com.
- Intel Literature contact: 1(800) 548-4725.
- Epson Research and Development Website: www.erd.epson.com.

7 Sales and Technical Support

7.1 EPSON LCD/USB Companion Chips (S1D13A05)

Japan

Seiko Epson Corporation **Electronic Devices Marketing Division** 421-8, Hino, Hino-shi Tokyo 191-8501, Japan Tel: 042-587-5812 Fax: 042-587-5564 http://www.epson.co.jp/

Hong Kong

Epson Hong Kong Ltd. 20/F., Harbour Centre 25 Harbour Road Wanchai, Hong Kong Tel: 2585-4600 Fax: 2827-4346

http://www.epson.com.hk/

North America

Epson Electronics America, Inc. 150 River Oaks Parkway San Jose, CA 95134, USA Tel: (408) 922-0200 Fax: (408) 922-0238 http://www.eea.epson.com/

Europe

Epson Europe Electronics GmbH Riesstrasse 15 80992 Munich, Germany Tel: 089-14005-0 Fax: 089-14005-110 http://www.epson-electronics.de/

Taiwan

Epson Taiwan Technology & Trading Ltd. 10F, No. 287 Nanking East Road Sec. 3, Taipei, Taiwan Tel: 02-2717-7360 Fax: 02-2712-9164 http://www.epson.com.tw/

Singapore

Epson Singapore Pte., Ltd. No. 1 Temasek Avenue #36-00 Millenia Tower Singapore, 039192 Tel: 337-7911 Fax: 334-2716

http://www.epson.com.sg/

7.2 Intel StrongARM SA-1110 Processor

INTEL

Intel Customer Support (ICS) for StrongARM: (800) 628-8686

Website for StrongARM Processor http://developer.intel.com/design/strong/

THIS PAGE LEFT BLANK